Spaces:
Sleeping
Sleeping
Update retrain.py
Browse files- retrain.py +49 -0
retrain.py
CHANGED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from torch.utils.data import Dataset, DataLoader
|
5 |
+
from evo_model import EvoTransformerV22
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.optim as optim
|
8 |
+
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
10 |
+
|
11 |
+
class FeedbackDataset(Dataset):
|
12 |
+
def __init__(self, csv_file):
|
13 |
+
self.data = pd.read_csv(csv_file).dropna()
|
14 |
+
|
15 |
+
def __len__(self):
|
16 |
+
return len(self.data)
|
17 |
+
|
18 |
+
def __getitem__(self, idx):
|
19 |
+
x = self.data.iloc[idx]
|
20 |
+
combined = x['query'] + " " + x['context']
|
21 |
+
enc = tokenizer(combined, padding="max_length", truncation=True, max_length=128, return_tensors="pt")
|
22 |
+
label = torch.tensor(float(x['label'])).unsqueeze(0) # Single logit
|
23 |
+
return enc['input_ids'].squeeze(0), label
|
24 |
+
|
25 |
+
def fine_tune_on_feedback(model_path="trained_model_evo_hellaswag.pt", feedback_file="feedback_log.csv"):
|
26 |
+
model = EvoTransformerV22()
|
27 |
+
model.load_state_dict(torch.load(model_path))
|
28 |
+
model.train()
|
29 |
+
|
30 |
+
dataset = FeedbackDataset(feedback_file)
|
31 |
+
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)
|
32 |
+
|
33 |
+
model.to("cpu")
|
34 |
+
optimizer = optim.Adam(model.parameters(), lr=1e-5)
|
35 |
+
loss_fn = nn.BCEWithLogitsLoss()
|
36 |
+
|
37 |
+
for epoch in range(2): # Light touch-up
|
38 |
+
total_loss = 0
|
39 |
+
for input_ids, labels in dataloader:
|
40 |
+
optimizer.zero_grad()
|
41 |
+
outputs = model(input_ids)
|
42 |
+
loss = loss_fn(outputs.view(-1), labels.view(-1))
|
43 |
+
loss.backward()
|
44 |
+
optimizer.step()
|
45 |
+
total_loss += loss.item()
|
46 |
+
print(f"Epoch {epoch + 1} Loss: {total_loss:.4f}")
|
47 |
+
|
48 |
+
torch.save(model.state_dict(), model_path)
|
49 |
+
print("✅ Evo updated from feedback.")
|