Spaces:
Sleeping
Sleeping
Update inference.py
Browse files- inference.py +14 -10
inference.py
CHANGED
@@ -1,33 +1,39 @@
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer
|
3 |
from evo_model import EvoTransformerV22
|
|
|
4 |
from openai import OpenAI
|
5 |
import os
|
6 |
|
7 |
-
# Load Evo
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
evo_model = EvoTransformerV22()
|
10 |
evo_model.load_state_dict(torch.load("trained_model_evo_hellaswag.pt", map_location=device))
|
11 |
evo_model.to(device)
|
12 |
evo_model.eval()
|
13 |
|
14 |
-
# Load
|
15 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
16 |
|
17 |
-
#
|
18 |
-
def
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
inputs = tokenizer(combined, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
|
21 |
input_ids = inputs["input_ids"].to(device)
|
22 |
|
|
|
23 |
with torch.no_grad():
|
24 |
logits = evo_model(input_ids)
|
25 |
pred = int(torch.sigmoid(logits).item() > 0.5)
|
26 |
|
27 |
return f"Evo suggests: Option {pred + 1}"
|
28 |
|
29 |
-
#
|
30 |
-
openai_api_key = os.environ.get("OPENAI_API_KEY", "sk
|
31 |
client = OpenAI(api_key=openai_api_key)
|
32 |
|
33 |
def get_gpt_response(query, context):
|
@@ -35,9 +41,7 @@ def get_gpt_response(query, context):
|
|
35 |
prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
|
36 |
response = client.chat.completions.create(
|
37 |
model="gpt-3.5-turbo",
|
38 |
-
messages=[
|
39 |
-
{"role": "user", "content": prompt}
|
40 |
-
],
|
41 |
temperature=0.3
|
42 |
)
|
43 |
return response.choices[0].message.content.strip()
|
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer
|
3 |
from evo_model import EvoTransformerV22
|
4 |
+
from retriever import retrieve
|
5 |
from openai import OpenAI
|
6 |
import os
|
7 |
|
8 |
+
# --- Load Evo Model ---
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
evo_model = EvoTransformerV22()
|
11 |
evo_model.load_state_dict(torch.load("trained_model_evo_hellaswag.pt", map_location=device))
|
12 |
evo_model.to(device)
|
13 |
evo_model.eval()
|
14 |
|
15 |
+
# --- Load Tokenizer ---
|
16 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
17 |
|
18 |
+
# --- EvoRAG Inference ---
|
19 |
+
def evo_rag_response(query):
|
20 |
+
# Step 1: retrieve document chunks
|
21 |
+
rag_context = retrieve(query)
|
22 |
+
|
23 |
+
# Step 2: combine query with retrieved context
|
24 |
+
combined = query + " " + rag_context
|
25 |
inputs = tokenizer(combined, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
|
26 |
input_ids = inputs["input_ids"].to(device)
|
27 |
|
28 |
+
# Step 3: predict using Evo
|
29 |
with torch.no_grad():
|
30 |
logits = evo_model(input_ids)
|
31 |
pred = int(torch.sigmoid(logits).item() > 0.5)
|
32 |
|
33 |
return f"Evo suggests: Option {pred + 1}"
|
34 |
|
35 |
+
# --- GPT-3.5 Inference (OpenAI >= 1.0.0) ---
|
36 |
+
openai_api_key = os.environ.get("OPENAI_API_KEY", "sk-...") # Replace or use HF secret
|
37 |
client = OpenAI(api_key=openai_api_key)
|
38 |
|
39 |
def get_gpt_response(query, context):
|
|
|
41 |
prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
|
42 |
response = client.chat.completions.create(
|
43 |
model="gpt-3.5-turbo",
|
44 |
+
messages=[{"role": "user", "content": prompt}],
|
|
|
|
|
45 |
temperature=0.3
|
46 |
)
|
47 |
return response.choices[0].message.content.strip()
|