Spaces:
Sleeping
Sleeping
Update evo_model.py
Browse files- evo_model.py +36 -0
evo_model.py
CHANGED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
class EvoTransformerV22(nn.Module):
|
6 |
+
def __init__(self, d_model=384, num_heads=6, ffn_dim=1024, num_layers=6, memory_enabled=False):
|
7 |
+
super().__init__()
|
8 |
+
self.embedding = nn.Embedding(30522, d_model)
|
9 |
+
self.memory_enabled = memory_enabled
|
10 |
+
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model)) if memory_enabled else None
|
11 |
+
|
12 |
+
encoder_layer = nn.TransformerEncoderLayer(
|
13 |
+
d_model=d_model,
|
14 |
+
nhead=num_heads,
|
15 |
+
dim_feedforward=ffn_dim,
|
16 |
+
batch_first=True
|
17 |
+
)
|
18 |
+
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
19 |
+
self.pool = nn.AdaptiveAvgPool1d(1)
|
20 |
+
|
21 |
+
self.classifier = nn.Sequential(
|
22 |
+
nn.Linear(d_model, 128),
|
23 |
+
nn.ReLU(),
|
24 |
+
nn.Linear(128, 2) # Binary classification
|
25 |
+
)
|
26 |
+
|
27 |
+
def forward(self, input_ids):
|
28 |
+
x = self.embedding(input_ids)
|
29 |
+
|
30 |
+
if self.memory_enabled and self.memory_token is not None:
|
31 |
+
mem = self.memory_token.expand(x.size(0), 1, x.size(2))
|
32 |
+
x = torch.cat([mem, x], dim=1)
|
33 |
+
|
34 |
+
x = self.transformer(x)
|
35 |
+
x = self.pool(x.transpose(1, 2)).squeeze(-1)
|
36 |
+
return self.classifier(x)
|