import torch from transformers import AutoTokenizer from evo_model import EvoTransformerV22 from retriever import retrieve from websearch import web_search from openai import OpenAI import os # --- Load Evo Model --- device = torch.device("cuda" if torch.cuda.is_available() else "cpu") evo_model = EvoTransformerV22() evo_model.load_state_dict(torch.load("trained_model_evo_hellaswag.pt", map_location=device)) evo_model.to(device) evo_model.eval() # --- Load Tokenizer --- tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # --- EvoRAG+ Inference --- def evo_rag_response(query): # Step 1: get document context (from uploaded file) rag_context = retrieve(query) # Step 2: get online info (search/web) web_context = web_search(query) # Step 3: combine all into one input combined = query + "\n\n" + rag_context + "\n\n" + web_context inputs = tokenizer(combined, return_tensors="pt", truncation=True, padding="max_length", max_length=128) input_ids = inputs["input_ids"].to(device) # Step 4: Evo prediction with torch.no_grad(): logits = evo_model(input_ids) pred = int(torch.sigmoid(logits).item() > 0.5) return f"Evo suggests: Option {pred + 1}" # --- GPT-3.5 Inference (OpenAI >= 1.0.0) --- openai_api_key = os.environ.get("OPENAI_API_KEY", "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") # Replace or use HF secret client = OpenAI(api_key=openai_api_key) def get_gpt_response(query, context): try: prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:" response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": prompt}], temperature=0.3 ) return response.choices[0].message.content.strip() except Exception as e: return f"Error from GPT: {e}"