import torch from transformers import AutoTokenizer from evo_model import EvoTransformerV22 from openai import OpenAI import os # Load Evo model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") evo_model = EvoTransformerV22() evo_model.load_state_dict(torch.load("trained_model_evo_hellaswag.pt", map_location=device)) evo_model.to(device) evo_model.eval() # Load tokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # 🧠 Evo logic (binary classification with sigmoid) def get_evo_response(query, context): combined = query + " " + context inputs = tokenizer(combined, return_tensors="pt", truncation=True, padding="max_length", max_length=128) input_ids = inputs["input_ids"].to(device) with torch.no_grad(): logits = evo_model(input_ids) pred = int(torch.sigmoid(logits).item() > 0.5) return f"Evo suggests: Option {pred + 1}" # 🤖 GPT-3.5 comparison using openai>=1.0.0 openai_api_key = os.environ.get("OPENAI_API_KEY", "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") # Replace with real key or set via HF secrets client = OpenAI(api_key=openai_api_key) def get_gpt_response(query, context): try: prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:" response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "user", "content": prompt} ], temperature=0.3 ) return response.choices[0].message.content.strip() except Exception as e: return f"Error from GPT: {e}"