import torch import torch.nn as nn import torch.nn.functional as F class EvoTransformerV22(nn.Module): def __init__(self, d_model=384, num_heads=6, ffn_dim=1024, num_layers=6, memory_enabled=False): super().__init__() self.embedding = nn.Embedding(30522, d_model) self.memory_enabled = memory_enabled self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model)) if memory_enabled else None encoder_layer = nn.TransformerEncoderLayer( d_model=d_model, nhead=num_heads, dim_feedforward=ffn_dim, batch_first=True ) self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) self.pool = nn.AdaptiveAvgPool1d(1) self.classifier = nn.Sequential( nn.Linear(d_model, 128), nn.ReLU(), nn.Linear(128, 2) # Binary classification ) def forward(self, input_ids): x = self.embedding(input_ids) if self.memory_enabled and self.memory_token is not None: mem = self.memory_token.expand(x.size(0), 1, x.size(2)) x = torch.cat([mem, x], dim=1) x = self.transformer(x) x = self.pool(x.transpose(1, 2)).squeeze(-1) return self.classifier(x)