import torch from transformers import AutoTokenizer, OpenAIGPTLMHeadModel from evo_model import EvoTransformerV22 # Load Evo model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") evo_model = EvoTransformerV22() evo_model.load_state_dict(torch.load("trained_model/evo_hellaswag.pt", map_location=device)) evo_model.to(device) evo_model.eval() # Load tokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # 🧠 Evo logic def get_evo_response(query, context): combined = query + " " + context inputs = tokenizer(combined, return_tensors="pt", truncation=True, padding="max_length", max_length=128) input_ids = inputs["input_ids"].to(device) with torch.no_grad(): logits = evo_model(input_ids) pred = torch.argmax(logits, dim=1).item() return f"Evo suggests: Option {pred + 1}" # Assumes binary classification (0 or 1) # 🤖 GPT-3.5 comparison (optional) import openai openai.api_key = "sk-..." # Replace with your OpenAI API key def get_gpt_response(query, context): try: prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:" response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": prompt}], temperature=0.3 ) return response['choices'][0]['message']['content'].strip() except Exception as e: return f"Error from GPT: {e}"