EvoConvo / generate.py
HemanM's picture
Update generate.py
00ea8bb verified
raw
history blame
1.1 kB
# generate.py
import torch
from transformers import BertTokenizer
from evo_model import EvoDecoderModel
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load tokenizer
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# Initialize model architecture
vocab_size = tokenizer.vocab_size
model = EvoDecoderModel(vocab_size=vocab_size)
model.load_state_dict(torch.load("evo_decoder_model.pt", map_location=device))
model.to(device)
model.eval()
def generate_response(prompt, max_length=128, use_web=False):
with torch.no_grad():
input_ids = tokenizer(prompt, return_tensors="pt", padding=False, truncation=True).input_ids.to(device)
input_ids = input_ids[:, :128] # ✅ clip to trained length
logits = model(input_ids)
next_token_logits = logits[:, -1, :] # take last token's logits
predicted_id = torch.argmax(next_token_logits, dim=-1)
output_ids = torch.cat([input_ids, predicted_id.unsqueeze(0)], dim=1)
decoded = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return decoded