|
import gradio as gr |
|
import torch |
|
from transformers import GPT2Tokenizer |
|
from evo_model import EvoDecoderModel |
|
from generate import generate_text |
|
|
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
vocab_size = tokenizer.vocab_size |
|
|
|
model = EvoDecoderModel(vocab_size) |
|
model.load_state_dict(torch.load("evo_decoder.pt", map_location="cpu")) |
|
model.eval() |
|
|
|
def chat_with_evo(prompt): |
|
response = generate_text(model, tokenizer, prompt) |
|
return response |
|
|
|
gr.Interface(fn=chat_with_evo, |
|
inputs="text", |
|
outputs="text", |
|
title="🧠 EvoDecoder Chatbot", |
|
description="Ask Evo anything. Powered by your trained EvoDecoder.").launch() |
|
|