Update evo_model.py
Browse files- evo_model.py +6 -12
evo_model.py
CHANGED
@@ -4,20 +4,21 @@ import torch.nn as nn
|
|
4 |
import math
|
5 |
|
6 |
class PositionalEncoding(nn.Module):
|
7 |
-
def __init__(self, d_model, max_len=
|
8 |
super().__init__()
|
9 |
pe = torch.zeros(max_len, d_model)
|
10 |
position = torch.arange(0, max_len).unsqueeze(1)
|
11 |
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
12 |
pe[:, 0::2] = torch.sin(position * div_term)
|
13 |
pe[:, 1::2] = torch.cos(position * div_term)
|
14 |
-
pe = pe.unsqueeze(0) #
|
15 |
self.register_buffer('pe', pe)
|
|
|
16 |
|
17 |
def forward(self, x):
|
18 |
seq_len = x.size(1)
|
19 |
-
if seq_len > self.
|
20 |
-
raise ValueError(f"Input length {seq_len} exceeds max_len {self.
|
21 |
return x + self.pe[:, :seq_len]
|
22 |
|
23 |
class EvoDecoderModel(nn.Module):
|
@@ -25,18 +26,11 @@ class EvoDecoderModel(nn.Module):
|
|
25 |
super().__init__()
|
26 |
self.token_embed = nn.Embedding(vocab_size, d_model)
|
27 |
self.pos_encoder = PositionalEncoding(d_model)
|
28 |
-
decoder_layer = nn.TransformerDecoderLayer(
|
29 |
-
d_model=d_model,
|
30 |
-
nhead=nhead,
|
31 |
-
dim_feedforward=dim_feedforward,
|
32 |
-
dropout=dropout,
|
33 |
-
batch_first=True
|
34 |
-
)
|
35 |
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
|
36 |
self.lm_head = nn.Linear(d_model, vocab_size)
|
37 |
|
38 |
def forward(self, input_ids):
|
39 |
-
input_ids = input_ids[:, :128] # ⬅ clip input to match saved model's trained length
|
40 |
x = self.token_embed(input_ids)
|
41 |
x = self.pos_encoder(x)
|
42 |
seq_len = x.size(1)
|
|
|
4 |
import math
|
5 |
|
6 |
class PositionalEncoding(nn.Module):
|
7 |
+
def __init__(self, d_model, max_len=128):
|
8 |
super().__init__()
|
9 |
pe = torch.zeros(max_len, d_model)
|
10 |
position = torch.arange(0, max_len).unsqueeze(1)
|
11 |
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
12 |
pe[:, 0::2] = torch.sin(position * div_term)
|
13 |
pe[:, 1::2] = torch.cos(position * div_term)
|
14 |
+
pe = pe.unsqueeze(0) # (1, max_len, d_model)
|
15 |
self.register_buffer('pe', pe)
|
16 |
+
self.max_len = max_len
|
17 |
|
18 |
def forward(self, x):
|
19 |
seq_len = x.size(1)
|
20 |
+
if seq_len > self.max_len:
|
21 |
+
raise ValueError(f"Input length {seq_len} exceeds max_len {self.max_len}")
|
22 |
return x + self.pe[:, :seq_len]
|
23 |
|
24 |
class EvoDecoderModel(nn.Module):
|
|
|
26 |
super().__init__()
|
27 |
self.token_embed = nn.Embedding(vocab_size, d_model)
|
28 |
self.pos_encoder = PositionalEncoding(d_model)
|
29 |
+
decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, batch_first=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
|
31 |
self.lm_head = nn.Linear(d_model, vocab_size)
|
32 |
|
33 |
def forward(self, input_ids):
|
|
|
34 |
x = self.token_embed(input_ids)
|
35 |
x = self.pos_encoder(x)
|
36 |
seq_len = x.size(1)
|