Update evo_model.py
Browse files- evo_model.py +10 -35
evo_model.py
CHANGED
@@ -1,39 +1,14 @@
|
|
1 |
-
# evo_model.py
|
2 |
-
import torch
|
3 |
import torch.nn as nn
|
4 |
-
import math
|
5 |
-
|
6 |
-
class PositionalEncoding(nn.Module):
|
7 |
-
def __init__(self, d_model, max_len=128):
|
8 |
-
super().__init__()
|
9 |
-
pe = torch.zeros(max_len, d_model)
|
10 |
-
position = torch.arange(0, max_len).unsqueeze(1)
|
11 |
-
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
12 |
-
pe[:, 0::2] = torch.sin(position * div_term)
|
13 |
-
pe[:, 1::2] = torch.cos(position * div_term)
|
14 |
-
pe = pe.unsqueeze(0) # (1, max_len, d_model)
|
15 |
-
self.register_buffer('pe', pe)
|
16 |
-
self.max_len = max_len
|
17 |
-
|
18 |
-
def forward(self, x):
|
19 |
-
seq_len = x.size(1)
|
20 |
-
if seq_len > self.max_len:
|
21 |
-
raise ValueError(f"Input length {seq_len} exceeds max_len {self.max_len}")
|
22 |
-
return x + self.pe[:, :seq_len]
|
23 |
|
24 |
class EvoDecoderModel(nn.Module):
|
25 |
def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1):
|
26 |
-
super().__init__()
|
27 |
-
self.
|
28 |
-
|
29 |
-
|
30 |
-
self.
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
seq_len = x.size(1)
|
37 |
-
mask = torch.triu(torch.ones(seq_len, seq_len, device=x.device), diagonal=1).bool()
|
38 |
-
x = self.decoder(x, x, tgt_mask=mask)
|
39 |
-
return self.lm_head(x)
|
|
|
|
|
|
|
1 |
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
class EvoDecoderModel(nn.Module):
|
4 |
def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1):
|
5 |
+
super(EvoDecoderModel, self).__init__()
|
6 |
+
self.embedding = nn.Embedding(vocab_size, d_model)
|
7 |
+
decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout)
|
8 |
+
self.transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers)
|
9 |
+
self.output_layer = nn.Linear(d_model, vocab_size)
|
10 |
+
|
11 |
+
def forward(self, tgt, memory):
|
12 |
+
embedded = self.embedding(tgt)
|
13 |
+
output = self.transformer_decoder(embedded, memory)
|
14 |
+
return self.output_layer(output)
|
|
|
|
|
|
|
|