Update evo_model.py
Browse files- evo_model.py +15 -21
evo_model.py
CHANGED
@@ -1,42 +1,36 @@
|
|
1 |
-
# evo_model.py
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
import math
|
5 |
|
6 |
class PositionalEncoding(nn.Module):
|
7 |
-
def __init__(self, d_model, max_len=
|
8 |
super().__init__()
|
9 |
pe = torch.zeros(max_len, d_model)
|
10 |
-
position = torch.arange(0, max_len
|
11 |
-
div_term = torch.exp(torch.arange(0, d_model, 2)
|
12 |
pe[:, 0::2] = torch.sin(position * div_term)
|
13 |
pe[:, 1::2] = torch.cos(position * div_term)
|
14 |
-
pe = pe.unsqueeze(0) #
|
15 |
self.register_buffer('pe', pe)
|
16 |
|
17 |
def forward(self, x):
|
18 |
return x + self.pe[:, :x.size(1)]
|
19 |
|
|
|
20 |
class EvoDecoderModel(nn.Module):
|
21 |
def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1):
|
22 |
super().__init__()
|
23 |
-
self.
|
24 |
self.pos_encoder = PositionalEncoding(d_model)
|
25 |
-
decoder_layer = nn.TransformerDecoderLayer(
|
26 |
-
d_model=d_model,
|
27 |
-
nhead=nhead,
|
28 |
-
dim_feedforward=dim_feedforward,
|
29 |
-
dropout=dropout,
|
30 |
-
batch_first=True
|
31 |
-
)
|
32 |
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
|
33 |
-
self.
|
34 |
|
35 |
def forward(self, input_ids):
|
36 |
-
|
37 |
-
|
38 |
-
seq_len =
|
39 |
-
mask = torch.triu(torch.ones(seq_len, seq_len, device=
|
40 |
-
|
41 |
-
|
42 |
-
return logits
|
|
|
1 |
+
# evo_model.py
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
import math
|
5 |
|
6 |
class PositionalEncoding(nn.Module):
|
7 |
+
def __init__(self, d_model, max_len=128): # ✅ match the saved model's pe shape
|
8 |
super().__init__()
|
9 |
pe = torch.zeros(max_len, d_model)
|
10 |
+
position = torch.arange(0, max_len).unsqueeze(1)
|
11 |
+
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
12 |
pe[:, 0::2] = torch.sin(position * div_term)
|
13 |
pe[:, 1::2] = torch.cos(position * div_term)
|
14 |
+
pe = pe.unsqueeze(0) # (1, max_len, d_model)
|
15 |
self.register_buffer('pe', pe)
|
16 |
|
17 |
def forward(self, x):
|
18 |
return x + self.pe[:, :x.size(1)]
|
19 |
|
20 |
+
|
21 |
class EvoDecoderModel(nn.Module):
|
22 |
def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1):
|
23 |
super().__init__()
|
24 |
+
self.token_embed = nn.Embedding(vocab_size, d_model) # ✅ match checkpoint name
|
25 |
self.pos_encoder = PositionalEncoding(d_model)
|
26 |
+
decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, batch_first=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
|
28 |
+
self.lm_head = nn.Linear(d_model, vocab_size) # ✅ match checkpoint name
|
29 |
|
30 |
def forward(self, input_ids):
|
31 |
+
x = self.token_embed(input_ids)
|
32 |
+
x = self.pos_encoder(x)
|
33 |
+
seq_len = x.size(1)
|
34 |
+
mask = torch.triu(torch.ones(seq_len, seq_len, device=x.device), diagonal=1).bool()
|
35 |
+
x = self.decoder(x, x, tgt_mask=mask)
|
36 |
+
return self.lm_head(x)
|
|