HemanM commited on
Commit
1fc6fa8
·
verified ·
1 Parent(s): 315a5d2

Update evo_model.py

Browse files
Files changed (1) hide show
  1. evo_model.py +15 -21
evo_model.py CHANGED
@@ -1,42 +1,36 @@
1
- # evo_model.py — EvoDecoder model with extended positional encoding
2
  import torch
3
  import torch.nn as nn
4
  import math
5
 
6
  class PositionalEncoding(nn.Module):
7
- def __init__(self, d_model, max_len=512): # Increased from 128 to 512
8
  super().__init__()
9
  pe = torch.zeros(max_len, d_model)
10
- position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
11
- div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
12
  pe[:, 0::2] = torch.sin(position * div_term)
13
  pe[:, 1::2] = torch.cos(position * div_term)
14
- pe = pe.unsqueeze(0) # shape: [1, max_len, d_model]
15
  self.register_buffer('pe', pe)
16
 
17
  def forward(self, x):
18
  return x + self.pe[:, :x.size(1)]
19
 
 
20
  class EvoDecoderModel(nn.Module):
21
  def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1):
22
  super().__init__()
23
- self.embedding = nn.Embedding(vocab_size, d_model)
24
  self.pos_encoder = PositionalEncoding(d_model)
25
- decoder_layer = nn.TransformerDecoderLayer(
26
- d_model=d_model,
27
- nhead=nhead,
28
- dim_feedforward=dim_feedforward,
29
- dropout=dropout,
30
- batch_first=True
31
- )
32
  self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
33
- self.linear = nn.Linear(d_model, vocab_size)
34
 
35
  def forward(self, input_ids):
36
- embedded = self.embedding(input_ids)
37
- embedded = self.pos_encoder(embedded)
38
- seq_len = embedded.size(1)
39
- mask = torch.triu(torch.ones(seq_len, seq_len, device=embedded.device), diagonal=1).bool()
40
- output = self.decoder(embedded, embedded, tgt_mask=mask)
41
- logits = self.linear(output)
42
- return logits
 
1
+ # evo_model.py
2
  import torch
3
  import torch.nn as nn
4
  import math
5
 
6
  class PositionalEncoding(nn.Module):
7
+ def __init__(self, d_model, max_len=128): # match the saved model's pe shape
8
  super().__init__()
9
  pe = torch.zeros(max_len, d_model)
10
+ position = torch.arange(0, max_len).unsqueeze(1)
11
+ div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
12
  pe[:, 0::2] = torch.sin(position * div_term)
13
  pe[:, 1::2] = torch.cos(position * div_term)
14
+ pe = pe.unsqueeze(0) # (1, max_len, d_model)
15
  self.register_buffer('pe', pe)
16
 
17
  def forward(self, x):
18
  return x + self.pe[:, :x.size(1)]
19
 
20
+
21
  class EvoDecoderModel(nn.Module):
22
  def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1):
23
  super().__init__()
24
+ self.token_embed = nn.Embedding(vocab_size, d_model) # ✅ match checkpoint name
25
  self.pos_encoder = PositionalEncoding(d_model)
26
+ decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, batch_first=True)
 
 
 
 
 
 
27
  self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
28
+ self.lm_head = nn.Linear(d_model, vocab_size) # ✅ match checkpoint name
29
 
30
  def forward(self, input_ids):
31
+ x = self.token_embed(input_ids)
32
+ x = self.pos_encoder(x)
33
+ seq_len = x.size(1)
34
+ mask = torch.triu(torch.ones(seq_len, seq_len, device=x.device), diagonal=1).bool()
35
+ x = self.decoder(x, x, tgt_mask=mask)
36
+ return self.lm_head(x)