Update generate.py
Browse files- generate.py +8 -4
generate.py
CHANGED
@@ -3,18 +3,22 @@ import torch.nn.functional as F
|
|
3 |
from evo_model import EvoDecoder
|
4 |
from transformers import GPT2Tokenizer
|
5 |
|
6 |
-
# Load tokenizer
|
7 |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
8 |
|
9 |
-
# Load trained model
|
10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
-
model = EvoDecoder(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
model.load_state_dict(torch.load("evo_decoder.pt", map_location=device))
|
13 |
model.eval()
|
14 |
|
15 |
@torch.no_grad()
|
16 |
def generate_response(prompt, max_length=50, temperature=1.0):
|
17 |
-
model.eval()
|
18 |
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
19 |
|
20 |
for _ in range(max_length):
|
|
|
3 |
from evo_model import EvoDecoder
|
4 |
from transformers import GPT2Tokenizer
|
5 |
|
|
|
6 |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
7 |
|
|
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
model = EvoDecoder(
|
10 |
+
vocab_size=tokenizer.vocab_size,
|
11 |
+
d_model=256,
|
12 |
+
nhead=4,
|
13 |
+
num_layers=3,
|
14 |
+
dim_feedforward=1024
|
15 |
+
).to(device)
|
16 |
+
|
17 |
model.load_state_dict(torch.load("evo_decoder.pt", map_location=device))
|
18 |
model.eval()
|
19 |
|
20 |
@torch.no_grad()
|
21 |
def generate_response(prompt, max_length=50, temperature=1.0):
|
|
|
22 |
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
23 |
|
24 |
for _ in range(max_length):
|