Update evo_model.py
Browse files- evo_model.py +13 -10
evo_model.py
CHANGED
@@ -4,24 +4,27 @@ import torch.nn as nn
|
|
4 |
import math
|
5 |
|
6 |
class PositionalEncoding(nn.Module):
|
7 |
-
def __init__(self, d_model, max_len=128): #
|
8 |
super().__init__()
|
9 |
pe = torch.zeros(max_len, d_model)
|
10 |
-
position = torch.arange(0, max_len).unsqueeze(1)
|
11 |
-
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
12 |
pe[:, 0::2] = torch.sin(position * div_term)
|
13 |
pe[:, 1::2] = torch.cos(position * div_term)
|
14 |
pe = pe.unsqueeze(0) # (1, max_len, d_model)
|
15 |
self.register_buffer('pe', pe)
|
16 |
|
17 |
def forward(self, x):
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
class EvoDecoderModel(nn.Module):
|
21 |
def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1):
|
22 |
super().__init__()
|
23 |
-
self.token_embed = nn.Embedding(vocab_size, d_model)
|
24 |
-
self.pos_encoder = PositionalEncoding(d_model
|
25 |
decoder_layer = nn.TransformerDecoderLayer(
|
26 |
d_model=d_model,
|
27 |
nhead=nhead,
|
@@ -30,12 +33,12 @@ class EvoDecoderModel(nn.Module):
|
|
30 |
batch_first=True
|
31 |
)
|
32 |
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
|
33 |
-
self.lm_head = nn.Linear(d_model, vocab_size)
|
34 |
|
35 |
def forward(self, input_ids):
|
36 |
-
x = self.token_embed(input_ids)
|
37 |
-
x = self.pos_encoder(x)
|
38 |
seq_len = x.size(1)
|
39 |
mask = torch.triu(torch.ones(seq_len, seq_len, device=x.device), diagonal=1).bool()
|
40 |
x = self.decoder(x, x, tgt_mask=mask)
|
41 |
-
return self.lm_head(x)
|
|
|
4 |
import math
|
5 |
|
6 |
class PositionalEncoding(nn.Module):
|
7 |
+
def __init__(self, d_model, max_len=128): # Match saved model: [1, 128, 512]
|
8 |
super().__init__()
|
9 |
pe = torch.zeros(max_len, d_model)
|
10 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
11 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
12 |
pe[:, 0::2] = torch.sin(position * div_term)
|
13 |
pe[:, 1::2] = torch.cos(position * div_term)
|
14 |
pe = pe.unsqueeze(0) # (1, max_len, d_model)
|
15 |
self.register_buffer('pe', pe)
|
16 |
|
17 |
def forward(self, x):
|
18 |
+
seq_len = x.size(1)
|
19 |
+
if seq_len > self.pe.size(1):
|
20 |
+
raise ValueError(f"Input length {seq_len} exceeds max_len {self.pe.size(1)}")
|
21 |
+
return x + self.pe[:, :seq_len]
|
22 |
|
23 |
class EvoDecoderModel(nn.Module):
|
24 |
def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1):
|
25 |
super().__init__()
|
26 |
+
self.token_embed = nn.Embedding(vocab_size, d_model) # ✅ matches saved key: token_embed.weight
|
27 |
+
self.pos_encoder = PositionalEncoding(d_model) # ✅ fixed dimension and safe slicing
|
28 |
decoder_layer = nn.TransformerDecoderLayer(
|
29 |
d_model=d_model,
|
30 |
nhead=nhead,
|
|
|
33 |
batch_first=True
|
34 |
)
|
35 |
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
|
36 |
+
self.lm_head = nn.Linear(d_model, vocab_size) # ✅ matches saved key: lm_head.weight
|
37 |
|
38 |
def forward(self, input_ids):
|
39 |
+
x = self.token_embed(input_ids) # (B, T, D)
|
40 |
+
x = self.pos_encoder(x) # (B, T, D)
|
41 |
seq_len = x.size(1)
|
42 |
mask = torch.triu(torch.ones(seq_len, seq_len, device=x.device), diagonal=1).bool()
|
43 |
x = self.decoder(x, x, tgt_mask=mask)
|
44 |
+
return self.lm_head(x) # (B, T, V)
|