Update generate.py
Browse files- generate.py +12 -31
generate.py
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
-
# generate.py —
|
2 |
-
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer
|
5 |
from evo_model import EvoDecoderModel
|
6 |
-
from search_utils import web_search
|
7 |
|
8 |
-
# Set device
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
|
11 |
-
# Load tokenizer and
|
12 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
13 |
vocab_size = tokenizer.vocab_size
|
14 |
|
@@ -16,47 +14,30 @@ model = EvoDecoderModel(vocab_size=vocab_size).to(device)
|
|
16 |
model.load_state_dict(torch.load("evo_decoder_model.pt", map_location=device))
|
17 |
model.eval()
|
18 |
|
19 |
-
def generate_response(prompt, max_length=100, top_k=40
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
Args:
|
24 |
-
prompt (str): User input prompt.
|
25 |
-
max_length (int): Maximum number of tokens to generate.
|
26 |
-
top_k (int): Top-k sampling for diversity.
|
27 |
-
use_web (bool): Whether to augment prompt using live search.
|
28 |
-
|
29 |
-
Returns:
|
30 |
-
str: The generated assistant response.
|
31 |
-
"""
|
32 |
-
|
33 |
-
# Add RAG-based context if enabled
|
34 |
if use_web:
|
35 |
web_context = web_search(prompt)
|
36 |
-
|
37 |
-
else:
|
38 |
-
input_text = f"User: {prompt}\nAssistant:"
|
39 |
|
40 |
-
|
41 |
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
42 |
|
43 |
-
# Generate tokens autoregressively
|
44 |
for _ in range(max_length):
|
45 |
with torch.no_grad():
|
46 |
logits = model(input_ids)
|
47 |
next_token_logits = logits[:, -1, :]
|
|
|
|
|
48 |
top_k_probs, top_k_indices = torch.topk(next_token_logits, top_k)
|
49 |
probs = torch.softmax(top_k_probs, dim=-1)
|
50 |
-
next_token = top_k_indices[0, torch.multinomial(probs, 1)]
|
51 |
|
52 |
-
next_token = next_token.unsqueeze(0).unsqueeze(1) # (1, 1)
|
53 |
input_ids = torch.cat([input_ids, next_token], dim=1)
|
54 |
|
55 |
if next_token.item() == tokenizer.eos_token_id:
|
56 |
break
|
57 |
|
58 |
-
# Decode and return assistant's response only
|
59 |
output = tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
60 |
-
|
61 |
-
return output.split("Assistant:")[-1].strip()
|
62 |
-
return output.strip()
|
|
|
1 |
+
# generate.py — EvoDecoder response generation with optional DuckDuckGo RAG
|
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer
|
4 |
from evo_model import EvoDecoderModel
|
5 |
+
from search_utils import web_search
|
6 |
|
|
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
|
9 |
+
# Load tokenizer and model
|
10 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
11 |
vocab_size = tokenizer.vocab_size
|
12 |
|
|
|
14 |
model.load_state_dict(torch.load("evo_decoder_model.pt", map_location=device))
|
15 |
model.eval()
|
16 |
|
17 |
+
def generate_response(prompt, use_web=False, max_length=100, top_k=40):
|
18 |
+
# Augment with web context if enabled
|
19 |
+
context = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
if use_web:
|
21 |
web_context = web_search(prompt)
|
22 |
+
context += f"Relevant Info: {web_context}\n"
|
|
|
|
|
23 |
|
24 |
+
input_text = context + f"User: {prompt}\nAssistant:"
|
25 |
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
26 |
|
|
|
27 |
for _ in range(max_length):
|
28 |
with torch.no_grad():
|
29 |
logits = model(input_ids)
|
30 |
next_token_logits = logits[:, -1, :]
|
31 |
+
|
32 |
+
# Top-k sampling
|
33 |
top_k_probs, top_k_indices = torch.topk(next_token_logits, top_k)
|
34 |
probs = torch.softmax(top_k_probs, dim=-1)
|
35 |
+
next_token = top_k_indices[0, torch.multinomial(probs, 1).item()].unsqueeze(0).unsqueeze(0)
|
36 |
|
|
|
37 |
input_ids = torch.cat([input_ids, next_token], dim=1)
|
38 |
|
39 |
if next_token.item() == tokenizer.eos_token_id:
|
40 |
break
|
41 |
|
|
|
42 |
output = tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
43 |
+
return output.split("Assistant:")[-1].strip()
|
|
|
|