Update evo_model.py
Browse files- evo_model.py +41 -0
evo_model.py
CHANGED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# evo_model.py — Defines EvoDecoderModel used in inference and training
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import math
|
| 5 |
+
|
| 6 |
+
class PositionalEncoding(nn.Module):
|
| 7 |
+
def __init__(self, d_model, max_len=128):
|
| 8 |
+
super().__init__()
|
| 9 |
+
pe = torch.zeros(max_len, d_model)
|
| 10 |
+
position = torch.arange(0, max_len).unsqueeze(1)
|
| 11 |
+
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
|
| 12 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
| 13 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
| 14 |
+
pe = pe.unsqueeze(0) # [1, max_len, d_model]
|
| 15 |
+
self.register_buffer('pe', pe)
|
| 16 |
+
|
| 17 |
+
def forward(self, x):
|
| 18 |
+
return x + self.pe[:, :x.size(1)]
|
| 19 |
+
|
| 20 |
+
class EvoDecoderModel(nn.Module):
|
| 21 |
+
def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_ff=2048, max_len=128):
|
| 22 |
+
super().__init__()
|
| 23 |
+
self.token_embed = nn.Embedding(vocab_size, d_model)
|
| 24 |
+
self.pos_encoder = PositionalEncoding(d_model, max_len)
|
| 25 |
+
|
| 26 |
+
decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_ff, batch_first=True)
|
| 27 |
+
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
|
| 28 |
+
|
| 29 |
+
self.lm_head = nn.Linear(d_model, vocab_size)
|
| 30 |
+
|
| 31 |
+
def generate_square_subsequent_mask(self, sz):
|
| 32 |
+
return torch.triu(torch.full((sz, sz), float('-inf')), diagonal=1)
|
| 33 |
+
|
| 34 |
+
def forward(self, input_ids):
|
| 35 |
+
x = self.token_embed(input_ids)
|
| 36 |
+
x = self.pos_encoder(x)
|
| 37 |
+
|
| 38 |
+
tgt_mask = self.generate_square_subsequent_mask(x.size(1)).to(x.device)
|
| 39 |
+
x = self.decoder(x, x, tgt_mask=tgt_mask)
|
| 40 |
+
|
| 41 |
+
return self.lm_head(x)
|