Update generate.py
Browse files- generate.py +17 -10
generate.py
CHANGED
@@ -1,24 +1,31 @@
|
|
1 |
# generate.py
|
2 |
import torch
|
3 |
-
from transformers import
|
4 |
from evo_model import EvoDecoderModel
|
5 |
|
6 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
|
8 |
-
tokenizer
|
|
|
9 |
vocab_size = tokenizer.vocab_size
|
10 |
|
11 |
-
model = EvoDecoderModel(vocab_size=vocab_size)
|
12 |
model.load_state_dict(torch.load("evo_decoder_model.pt", map_location=device))
|
13 |
-
model.to(device)
|
14 |
model.eval()
|
15 |
|
16 |
-
def generate_response(prompt,
|
|
|
|
|
|
|
|
|
|
|
17 |
with torch.no_grad():
|
18 |
-
input_ids = tokenizer(prompt, return_tensors="pt").input_ids[:, :128].to(device)
|
19 |
logits = model(input_ids)
|
20 |
-
next_token_logits = logits[:, -1, :]
|
21 |
-
next_token_id = torch.argmax(next_token_logits, dim=-1)
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# generate.py
|
2 |
import torch
|
3 |
+
from transformers import AutoTokenizer
|
4 |
from evo_model import EvoDecoderModel
|
5 |
|
6 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
|
8 |
+
# Load tokenizer and model
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
10 |
vocab_size = tokenizer.vocab_size
|
11 |
|
12 |
+
model = EvoDecoderModel(vocab_size=vocab_size).to(device)
|
13 |
model.load_state_dict(torch.load("evo_decoder_model.pt", map_location=device))
|
|
|
14 |
model.eval()
|
15 |
|
16 |
+
def generate_response(prompt, use_web=False):
|
17 |
+
# Tokenize
|
18 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=128)
|
19 |
+
input_ids = inputs["input_ids"].to(device)
|
20 |
+
|
21 |
+
# Predict
|
22 |
with torch.no_grad():
|
|
|
23 |
logits = model(input_ids)
|
|
|
|
|
24 |
|
25 |
+
# Take last token's logits and get predicted token
|
26 |
+
next_token_logits = logits[0, -1] # shape: (vocab_size,)
|
27 |
+
predicted_token_id = torch.argmax(next_token_logits).item()
|
28 |
+
|
29 |
+
# Decode to word
|
30 |
+
predicted_token = tokenizer.decode([predicted_token_id])
|
31 |
+
return predicted_token
|