Update evo_model.py
Browse files- evo_model.py +15 -14
evo_model.py
CHANGED
@@ -1,27 +1,27 @@
|
|
1 |
-
# evo_model.py —
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
import math
|
5 |
|
6 |
class PositionalEncoding(nn.Module):
|
7 |
-
def __init__(self, d_model, max_len=
|
8 |
super().__init__()
|
9 |
pe = torch.zeros(max_len, d_model)
|
10 |
position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
|
11 |
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
12 |
pe[:, 0::2] = torch.sin(position * div_term)
|
13 |
pe[:, 1::2] = torch.cos(position * div_term)
|
14 |
-
pe = pe.unsqueeze(0) # shape [1, max_len, d_model]
|
15 |
-
self.
|
16 |
|
17 |
def forward(self, x):
|
18 |
return x + self.pe[:, :x.size(1)]
|
19 |
|
20 |
class EvoDecoderModel(nn.Module):
|
21 |
-
def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1
|
22 |
super().__init__()
|
23 |
-
self.
|
24 |
-
self.pos_encoder = PositionalEncoding(d_model
|
25 |
decoder_layer = nn.TransformerDecoderLayer(
|
26 |
d_model=d_model,
|
27 |
nhead=nhead,
|
@@ -30,12 +30,13 @@ class EvoDecoderModel(nn.Module):
|
|
30 |
batch_first=True
|
31 |
)
|
32 |
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
|
33 |
-
self.
|
34 |
|
35 |
def forward(self, input_ids):
|
36 |
-
|
37 |
-
|
38 |
-
seq_len =
|
39 |
-
mask = torch.triu(torch.ones(seq_len, seq_len, device=
|
40 |
-
output = self.decoder(
|
41 |
-
|
|
|
|
1 |
+
# evo_model.py — EvoDecoder model with extended positional encoding
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
import math
|
5 |
|
6 |
class PositionalEncoding(nn.Module):
|
7 |
+
def __init__(self, d_model, max_len=512): # Increased from 128 to 512
|
8 |
super().__init__()
|
9 |
pe = torch.zeros(max_len, d_model)
|
10 |
position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
|
11 |
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
12 |
pe[:, 0::2] = torch.sin(position * div_term)
|
13 |
pe[:, 1::2] = torch.cos(position * div_term)
|
14 |
+
pe = pe.unsqueeze(0) # shape: [1, max_len, d_model]
|
15 |
+
self.register_buffer('pe', pe)
|
16 |
|
17 |
def forward(self, x):
|
18 |
return x + self.pe[:, :x.size(1)]
|
19 |
|
20 |
class EvoDecoderModel(nn.Module):
|
21 |
+
def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1):
|
22 |
super().__init__()
|
23 |
+
self.embedding = nn.Embedding(vocab_size, d_model)
|
24 |
+
self.pos_encoder = PositionalEncoding(d_model)
|
25 |
decoder_layer = nn.TransformerDecoderLayer(
|
26 |
d_model=d_model,
|
27 |
nhead=nhead,
|
|
|
30 |
batch_first=True
|
31 |
)
|
32 |
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
|
33 |
+
self.linear = nn.Linear(d_model, vocab_size)
|
34 |
|
35 |
def forward(self, input_ids):
|
36 |
+
embedded = self.embedding(input_ids)
|
37 |
+
embedded = self.pos_encoder(embedded)
|
38 |
+
seq_len = embedded.size(1)
|
39 |
+
mask = torch.triu(torch.ones(seq_len, seq_len, device=embedded.device), diagonal=1).bool()
|
40 |
+
output = self.decoder(embedded, embedded, tgt_mask=mask)
|
41 |
+
logits = self.linear(output)
|
42 |
+
return logits
|