Update evo_model.py
Browse files- evo_model.py +14 -45
evo_model.py
CHANGED
@@ -1,53 +1,22 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
class EvoDecoderBlock(nn.Module):
|
6 |
-
def __init__(self, d_model=512, nhead=8, dim_feedforward=2048, dropout=0.1):
|
7 |
-
super(EvoDecoderBlock, self).__init__()
|
8 |
-
self.attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=True)
|
9 |
-
self.qkv_proj = nn.Linear(d_model, d_model * 3)
|
10 |
-
self.out_proj = nn.Linear(d_model, d_model)
|
11 |
-
self.ffn = nn.Sequential(
|
12 |
-
nn.Linear(d_model, dim_feedforward),
|
13 |
-
nn.ReLU(),
|
14 |
-
nn.Dropout(dropout),
|
15 |
-
nn.Linear(dim_feedforward, d_model),
|
16 |
-
)
|
17 |
-
self.ln1 = nn.LayerNorm(d_model)
|
18 |
-
self.ln2 = nn.LayerNorm(d_model)
|
19 |
-
|
20 |
-
def forward(self, x):
|
21 |
-
# Self-attention with skip connection
|
22 |
-
qkv = self.qkv_proj(x)
|
23 |
-
q, k, v = torch.chunk(qkv, 3, dim=-1)
|
24 |
-
attn_output, _ = self.attn(q, k, v)
|
25 |
-
x = self.ln1(x + self.out_proj(attn_output))
|
26 |
-
|
27 |
-
# Feedforward with skip connection
|
28 |
-
x = self.ln2(x + self.ffn(x))
|
29 |
-
return x
|
30 |
|
31 |
class EvoDecoderModel(nn.Module):
|
32 |
-
def __init__(self, vocab_size, d_model=
|
33 |
super(EvoDecoderModel, self).__init__()
|
34 |
-
self.
|
35 |
-
self.
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
])
|
40 |
-
self.ln_f = nn.LayerNorm(d_model)
|
41 |
-
self.fc_out = nn.Linear(d_model, vocab_size)
|
42 |
|
43 |
-
def forward(self,
|
44 |
-
|
45 |
-
|
46 |
-
pos = torch.arange(0, seq_len, device=device).unsqueeze(0)
|
47 |
-
x = self.token_emb(x) + self.pos_emb(pos)
|
48 |
|
49 |
-
|
50 |
-
|
|
|
51 |
|
52 |
-
|
53 |
-
return self.
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
class EvoDecoderModel(nn.Module):
|
5 |
+
def __init__(self, vocab_size, d_model=256, nhead=4, num_layers=3, dim_feedforward=1024, dropout=0.1):
|
6 |
super(EvoDecoderModel, self).__init__()
|
7 |
+
self.embedding = nn.Embedding(vocab_size, d_model)
|
8 |
+
self.pos_embedding = nn.Parameter(torch.zeros(1, 512, d_model)) # max length 512
|
9 |
+
decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout)
|
10 |
+
self.transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers)
|
11 |
+
self.output_layer = nn.Linear(d_model, vocab_size)
|
|
|
|
|
|
|
12 |
|
13 |
+
def forward(self, tgt, memory=None):
|
14 |
+
seq_len = tgt.size(1)
|
15 |
+
embedded = self.embedding(tgt) + self.pos_embedding[:, :seq_len, :]
|
|
|
|
|
16 |
|
17 |
+
# If no memory is provided, use dummy memory filled with zeros
|
18 |
+
if memory is None:
|
19 |
+
memory = torch.zeros_like(embedded)
|
20 |
|
21 |
+
output = self.transformer_decoder(embedded.transpose(0, 1), memory.transpose(0, 1))
|
22 |
+
return self.output_layer(output.transpose(0, 1))
|