Update generate.py
Browse files- generate.py +18 -12
generate.py
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
-
from transformers import GPT2Tokenizer
|
4 |
from evo_decoder import EvoDecoder
|
5 |
-
from
|
6 |
|
7 |
-
#
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
9 |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
10 |
tokenizer.pad_token = tokenizer.eos_token
|
11 |
-
|
12 |
model = EvoDecoder(
|
13 |
vocab_size=tokenizer.vocab_size,
|
14 |
d_model=256,
|
@@ -17,18 +17,24 @@ model = EvoDecoder(
|
|
17 |
dim_feedforward=512
|
18 |
).to(device)
|
19 |
|
|
|
20 |
model.load_state_dict(torch.load("evo_decoder.pt", map_location=device))
|
21 |
model.eval()
|
22 |
|
|
|
23 |
@torch.no_grad()
|
24 |
-
def generate_response(
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
30 |
|
31 |
-
for _ in range(
|
32 |
logits = model(input_ids)
|
33 |
logits = logits[:, -1, :] / temperature
|
34 |
probs = F.softmax(logits, dim=-1)
|
@@ -38,5 +44,5 @@ def generate_response(question, context="", use_rag=False, temperature=1.0):
|
|
38 |
if next_token.item() == tokenizer.eos_token_id:
|
39 |
break
|
40 |
|
41 |
-
output = tokenizer.decode(input_ids
|
42 |
-
return output[len(
|
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
|
|
3 |
from evo_decoder import EvoDecoder
|
4 |
+
from transformers import GPT2Tokenizer
|
5 |
|
6 |
+
# ✅ Device
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
# ✅ Load tokenizer and model
|
10 |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
11 |
tokenizer.pad_token = tokenizer.eos_token
|
|
|
12 |
model = EvoDecoder(
|
13 |
vocab_size=tokenizer.vocab_size,
|
14 |
d_model=256,
|
|
|
17 |
dim_feedforward=512
|
18 |
).to(device)
|
19 |
|
20 |
+
# ✅ Load trained weights
|
21 |
model.load_state_dict(torch.load("evo_decoder.pt", map_location=device))
|
22 |
model.eval()
|
23 |
|
24 |
+
# ✅ Response Generator
|
25 |
@torch.no_grad()
|
26 |
+
def generate_response(prompt, max_length=128, temperature=1.0, external_context=""):
|
27 |
+
model.eval()
|
28 |
+
|
29 |
+
# ✅ Force prompt into SQuAD-style format Evo was trained on
|
30 |
+
if external_context:
|
31 |
+
full_prompt = f"Context: {external_context}\nQuestion: {prompt}\nAnswer:"
|
32 |
+
else:
|
33 |
+
full_prompt = f"Question: {prompt}\nAnswer:"
|
34 |
|
35 |
+
input_ids = tokenizer.encode(full_prompt, return_tensors="pt").to(device)
|
|
|
36 |
|
37 |
+
for _ in range(max_length):
|
38 |
logits = model(input_ids)
|
39 |
logits = logits[:, -1, :] / temperature
|
40 |
probs = F.softmax(logits, dim=-1)
|
|
|
44 |
if next_token.item() == tokenizer.eos_token_id:
|
45 |
break
|
46 |
|
47 |
+
output = tokenizer.decode(input_ids.squeeze(), skip_special_tokens=True)
|
48 |
+
return output[len(full_prompt):].strip()
|