Update generate.py
Browse files- generate.py +7 -2
generate.py
CHANGED
@@ -1,17 +1,22 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn.functional as F
|
3 |
-
from evo_model import EvoDecoder
|
4 |
from transformers import GPT2Tokenizer
|
|
|
5 |
|
|
|
6 |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
|
|
7 |
|
|
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
model = EvoDecoder(
|
10 |
vocab_size=tokenizer.vocab_size,
|
11 |
d_model=256,
|
12 |
nhead=4,
|
13 |
num_layers=3,
|
14 |
-
dim_feedforward=512
|
15 |
).to(device)
|
16 |
|
17 |
model.load_state_dict(torch.load("evo_decoder.pt", map_location=device))
|
|
|
1 |
+
# generate.py
|
2 |
+
|
3 |
import torch
|
4 |
import torch.nn.functional as F
|
|
|
5 |
from transformers import GPT2Tokenizer
|
6 |
+
from evo_decoder import EvoDecoder
|
7 |
|
8 |
+
# Load tokenizer
|
9 |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
10 |
+
tokenizer.pad_token = tokenizer.eos_token # Safe default
|
11 |
|
12 |
+
# Load model
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
model = EvoDecoder(
|
15 |
vocab_size=tokenizer.vocab_size,
|
16 |
d_model=256,
|
17 |
nhead=4,
|
18 |
num_layers=3,
|
19 |
+
dim_feedforward=512
|
20 |
).to(device)
|
21 |
|
22 |
model.load_state_dict(torch.load("evo_decoder.pt", map_location=device))
|