Update generate.py
Browse files- generate.py +6 -5
generate.py
CHANGED
|
@@ -2,10 +2,10 @@ import torch
|
|
| 2 |
import torch.nn.functional as F
|
| 3 |
from transformers import GPT2Tokenizer
|
| 4 |
from evo_decoder import EvoDecoder
|
| 5 |
-
from search_utils import web_search
|
| 6 |
|
|
|
|
| 7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 8 |
-
|
| 9 |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
| 10 |
tokenizer.pad_token = tokenizer.eos_token
|
| 11 |
|
|
@@ -21,19 +21,20 @@ model.load_state_dict(torch.load("evo_decoder.pt", map_location=device))
|
|
| 21 |
model.eval()
|
| 22 |
|
| 23 |
@torch.no_grad()
|
| 24 |
-
def generate_response(question, context="", use_rag=False, temperature=1.0
|
| 25 |
-
if
|
| 26 |
context = web_search(question)
|
| 27 |
|
| 28 |
prompt = f"Context: {context}\nQuestion: {question}\nAnswer:"
|
| 29 |
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
| 30 |
|
| 31 |
-
for _ in range(
|
| 32 |
logits = model(input_ids)
|
| 33 |
logits = logits[:, -1, :] / temperature
|
| 34 |
probs = F.softmax(logits, dim=-1)
|
| 35 |
next_token = torch.multinomial(probs, num_samples=1)
|
| 36 |
input_ids = torch.cat((input_ids, next_token), dim=1)
|
|
|
|
| 37 |
if next_token.item() == tokenizer.eos_token_id:
|
| 38 |
break
|
| 39 |
|
|
|
|
| 2 |
import torch.nn.functional as F
|
| 3 |
from transformers import GPT2Tokenizer
|
| 4 |
from evo_decoder import EvoDecoder
|
| 5 |
+
from search_utils import web_search
|
| 6 |
|
| 7 |
+
# 🔧 Load model and tokenizer
|
| 8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 9 |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
| 10 |
tokenizer.pad_token = tokenizer.eos_token
|
| 11 |
|
|
|
|
| 21 |
model.eval()
|
| 22 |
|
| 23 |
@torch.no_grad()
|
| 24 |
+
def generate_response(question, context="", use_rag=False, temperature=1.0):
|
| 25 |
+
if not context and use_rag:
|
| 26 |
context = web_search(question)
|
| 27 |
|
| 28 |
prompt = f"Context: {context}\nQuestion: {question}\nAnswer:"
|
| 29 |
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
| 30 |
|
| 31 |
+
for _ in range(128):
|
| 32 |
logits = model(input_ids)
|
| 33 |
logits = logits[:, -1, :] / temperature
|
| 34 |
probs = F.softmax(logits, dim=-1)
|
| 35 |
next_token = torch.multinomial(probs, num_samples=1)
|
| 36 |
input_ids = torch.cat((input_ids, next_token), dim=1)
|
| 37 |
+
|
| 38 |
if next_token.item() == tokenizer.eos_token_id:
|
| 39 |
break
|
| 40 |
|