# evo_model.py — Defines EvoDecoderModel used in inference and training import torch import torch.nn as nn import math class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=128): super().__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) # [1, max_len, d_model] self.register_buffer('pe', pe) def forward(self, x): return x + self.pe[:, :x.size(1)] class EvoDecoderModel(nn.Module): def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_ff=2048, max_len=128): super().__init__() self.token_embed = nn.Embedding(vocab_size, d_model) self.pos_encoder = PositionalEncoding(d_model, max_len) decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_ff, batch_first=True) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) self.lm_head = nn.Linear(d_model, vocab_size) def generate_square_subsequent_mask(self, sz): return torch.triu(torch.full((sz, sz), float('-inf')), diagonal=1) def forward(self, input_ids): x = self.token_embed(input_ids) x = self.pos_encoder(x) tgt_mask = self.generate_square_subsequent_mask(x.size(1)).to(x.device) x = self.decoder(x, x, tgt_mask=tgt_mask) return self.lm_head(x)