# generate.py — EvoDecoder response generation with optional DuckDuckGo RAG import torch from transformers import AutoTokenizer from evo_model import EvoDecoderModel from search_utils import web_search device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") vocab_size = tokenizer.vocab_size model = EvoDecoderModel(vocab_size=vocab_size).to(device) model.load_state_dict(torch.load("evo_decoder_model.pt", map_location=device)) model.eval() def generate_response(prompt, use_web=False, max_length=100, top_k=40): # Augment with web context if enabled context = "" if use_web: web_context = web_search(prompt) context += f"Relevant Info: {web_context}\n" input_text = context + f"User: {prompt}\nAssistant:" input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device) for _ in range(max_length): with torch.no_grad(): logits = model(input_ids) next_token_logits = logits[:, -1, :] # Top-k sampling top_k_probs, top_k_indices = torch.topk(next_token_logits, top_k) probs = torch.softmax(top_k_probs, dim=-1) next_token = top_k_indices[0, torch.multinomial(probs, 1).item()].unsqueeze(0).unsqueeze(0) input_ids = torch.cat([input_ids, next_token], dim=1) if next_token.item() == tokenizer.eos_token_id: break output = tokenizer.decode(input_ids[0], skip_special_tokens=True) return output.split("Assistant:")[-1].strip()