import torch import torch.nn.functional as F from transformers import GPT2Tokenizer from evo_decoder import EvoDecoder from search_utils import web_search # 🔧 Load model and tokenizer device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") tokenizer.pad_token = tokenizer.eos_token model = EvoDecoder( vocab_size=tokenizer.vocab_size, d_model=256, nhead=4, num_layers=3, dim_feedforward=512 ).to(device) model.load_state_dict(torch.load("evo_decoder.pt", map_location=device)) model.eval() @torch.no_grad() def generate_response(question, context="", use_rag=False, temperature=1.0): if not context and use_rag: context = web_search(question) prompt = f"Context: {context}\nQuestion: {question}\nAnswer:" input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device) for _ in range(128): logits = model(input_ids) logits = logits[:, -1, :] / temperature probs = F.softmax(logits, dim=-1) next_token = torch.multinomial(probs, num_samples=1) input_ids = torch.cat((input_ids, next_token), dim=1) if next_token.item() == tokenizer.eos_token_id: break output = tokenizer.decode(input_ids[0], skip_special_tokens=True) return output[len(prompt):].strip()