# generate.py — Generates response using EvoDecoderModel with GPT2 tokenizer and top-k/p sampling import torch from transformers import GPT2Tokenizer from evo_model import EvoDecoderModel # Set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load GPT2 tokenizer (better for decoding tasks) tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") tokenizer.pad_token = tokenizer.eos_token # Safe fallback vocab_size = tokenizer.vocab_size # Load trained EvoDecoder model model = EvoDecoderModel(vocab_size=vocab_size).to(device) model.load_state_dict(torch.load("evo_decoder_model.pt", map_location=device)) model.eval() def generate_response(prompt, max_length=100, top_k=40): input_text = f"User: {prompt}\nAssistant:" input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device) for _ in range(max_length): with torch.no_grad(): logits = model(input_ids) next_token_logits = logits[:, -1, :].squeeze(0) # Apply repetition penalty for token_id in set(input_ids.view(-1).tolist()): next_token_logits[token_id] *= 0.8 # Top-k sampling top_k_logits, top_k_indices = torch.topk(next_token_logits, k=top_k) probs = torch.softmax(top_k_logits, dim=-1) next_token = top_k_indices[torch.multinomial(probs, num_samples=1)].unsqueeze(0) input_ids = torch.cat([input_ids, next_token.unsqueeze(0)], dim=1) # Stop on EOS if tokenizer.eos_token_id and next_token.item() == tokenizer.eos_token_id: break output = tokenizer.decode(input_ids[0], skip_special_tokens=True) return output.split("Assistant:")[-1].strip()