# evo_model.py import torch import torch.nn as nn import math class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=128): super().__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) # (1, max_len, d_model) self.register_buffer('pe', pe) self.max_len = max_len def forward(self, x): seq_len = x.size(1) if seq_len > self.max_len: raise ValueError(f"Input length {seq_len} exceeds max_len {self.max_len}") return x + self.pe[:, :seq_len] class EvoDecoderModel(nn.Module): def __init__(self, vocab_size, d_model=512, nhead=8, num_layers=6, dim_feedforward=2048, dropout=0.1): super().__init__() self.token_embed = nn.Embedding(vocab_size, d_model) self.pos_encoder = PositionalEncoding(d_model) decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, batch_first=True) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) self.lm_head = nn.Linear(d_model, vocab_size) def forward(self, input_ids): x = self.token_embed(input_ids) x = self.pos_encoder(x) seq_len = x.size(1) mask = torch.triu(torch.ones(seq_len, seq_len, device=x.device), diagonal=1).bool() x = self.decoder(x, x, tgt_mask=mask) return self.lm_head(x)