# generate.py import torch from transformers import AutoTokenizer from evo_model import EvoDecoderModel device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") vocab_size = tokenizer.vocab_size model = EvoDecoderModel(vocab_size=vocab_size).to(device) model.load_state_dict(torch.load("evo_decoder_model.pt", map_location=device)) model.eval() def generate_response(prompt, max_new_tokens=50, use_web=False): inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=128) input_ids = inputs["input_ids"].to(device) for _ in range(max_new_tokens): with torch.no_grad(): logits = model(input_ids) next_token_logits = logits[:, -1, :] # shape (B, vocab_size) next_token_id = torch.argmax(next_token_logits, dim=-1).unsqueeze(0) # shape (1, 1) # Append to input input_ids = torch.cat([input_ids, next_token_id], dim=1) # Stop if EOS token if next_token_id.item() in tokenizer.all_special_ids: break output_text = tokenizer.decode(input_ids[0], skip_special_tokens=True) return output_text[len(prompt):].strip()