import torch from transformers import GPT2Tokenizer from evo_model import EvoDecoderModel # Load tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2") tokenizer.pad_token = tokenizer.eos_token # Model configuration (must match evo_model.py and trained weights) vocab_size = tokenizer.vocab_size model = EvoDecoderModel(vocab_size=vocab_size, d_model=256, nhead=4, num_layers=3) model.load_state_dict(torch.load("evo_decoder.pt", map_location=torch.device("cpu"))) model.eval() def generate_response(prompt, max_length=100): input_ids = tokenizer.encode(prompt, return_tensors="pt") generated = input_ids.clone() with torch.no_grad(): for _ in range(max_length): output = model(generated, memory=None) next_token_logits = output[:, -1, :] next_token = torch.argmax(next_token_logits, dim=-1).unsqueeze(0) generated = torch.cat((generated, next_token), dim=1) if next_token.item() == tokenizer.eos_token_id: break return tokenizer.decode(generated[0], skip_special_tokens=True)