EvoPlatform / inference.py
HemanM's picture
Update inference.py
d3d00df verified
raw
history blame
1.85 kB
import os
import torch
from evo_model import EvoTransformer
from transformers import AutoTokenizer
from rag_utils import extract_text_from_file
from search_utils import web_search
# Load Evo model
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = EvoTransformer()
model.load_state_dict(torch.load("evo_hellaswag.pt", map_location="cpu"))
model.eval()
def get_evo_response(query, context=None, enable_search=True):
search_snippets = ""
if enable_search:
snippets = web_search(query)
if snippets:
search_snippets = "\n".join(snippets)
full_context = f"{context or ''}\n\n{search_snippets}".strip()
input_1 = f"{query} Option 1"
input_2 = f"{query} Option 2"
inputs = tokenizer([input_1, input_2], padding=True, truncation=True, return_tensors="pt")
with torch.no_grad():
logits = model(inputs["input_ids"]).squeeze(-1)
probs = torch.softmax(logits, dim=0)
best_idx = torch.argmax(probs).item()
suggestion = f"Option {best_idx + 1}"
reasoning = (
f"Evo suggests: **{suggestion}** (Confidence: {probs[best_idx]:.2f})\n\n"
f"Context used:\n{full_context}"
)
return suggestion, reasoning
def get_gpt_response(query, context=None):
import openai
openai.api_key = os.getenv("OPENAI_API_KEY", "")
context = context or "None"
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful expert advisor."},
{"role": "user", "content": f"Context: {context}\n\nQuestion: {query}"}
],
max_tokens=250
)
return response["choices"][0]["message"]["content"].strip()
except Exception as e:
return f"⚠️ GPT error: {str(e)}"