EvoPlatform / inference.py
HemanM's picture
Update inference.py
6a1a7af verified
raw
history blame
2.25 kB
import torch
import openai
import os
from transformers import AutoTokenizer
from evo_model import EvoTransformerV22
from rag_utils import extract_text_from_file
from search_utils import web_search
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = EvoTransformerV22()
model.load_state_dict(torch.load("evo_hellaswag.pt", map_location="cpu"))
model.eval()
def format_input(question, options, context, web_results):
prompt = f"{question}\n"
if context:
prompt += f"\nContext:\n{context}\n"
if web_results:
prompt += f"\nWeb Search Results:\n" + "\n".join(web_results)
prompt += "\nOptions:\n"
for idx, opt in enumerate(options):
prompt += f"{idx+1}. {opt}\n"
return prompt.strip()
def get_evo_response(question, context, options, enable_search=True):
web_results = web_search(question) if enable_search else []
input_text = format_input(question, options, context, web_results)
encoded = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=256)
with torch.no_grad():
logits = model(encoded["input_ids"])
probs = torch.softmax(logits, dim=1).squeeze()
pred_index = torch.argmax(probs).item()
confidence = probs[pred_index].item()
suggestion = options[pred_index] if pred_index < len(options) else "N/A"
evo_reasoning = f"Evo suggests: **{suggestion}** (Confidence: {confidence:.2f})\n\nContext used:\n" + "\n".join(web_results)
return suggestion, evo_reasoning
def get_gpt_response(question, context, options):
openai.api_key = os.getenv("OPENAI_API_KEY", "")
formatted_options = "\n".join([f"{i+1}. {opt}" for i, opt in enumerate(options)])
prompt = f"Question: {question}\n\nContext:\n{context}\n\nOptions:\n{formatted_options}\n\nWhich option makes the most sense and why?"
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful reasoning assistant."},
{"role": "user", "content": prompt}
]
)
return response['choices'][0]['message']['content']
except Exception as e:
return f"⚠️ GPT error: {str(e)}"