Spaces:
Sleeping
Sleeping
import torch | |
import openai | |
import os | |
from transformers import AutoTokenizer | |
from evo_model import EvoTransformerV22 | |
from rag_utils import extract_text_from_file | |
from search_utils import web_search | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
model = EvoTransformerV22() | |
model.load_state_dict(torch.load("evo_hellaswag.pt", map_location="cpu")) | |
model.eval() | |
def format_input(question, options, context, web_results): | |
prompt = f"{question}\n" | |
if context: | |
prompt += f"\nContext:\n{context}\n" | |
if web_results: | |
prompt += f"\nWeb Search Results:\n" + "\n".join(web_results) | |
prompt += "\nOptions:\n" | |
for idx, opt in enumerate(options): | |
prompt += f"{idx+1}. {opt}\n" | |
return prompt.strip() | |
def get_evo_response(question, context, options, enable_search=True): | |
web_results = web_search(question) if enable_search else [] | |
input_text = format_input(question, options, context, web_results) | |
encoded = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=256) | |
with torch.no_grad(): | |
logits = model(encoded["input_ids"]) | |
probs = torch.softmax(logits, dim=1).squeeze() | |
pred_index = torch.argmax(probs).item() | |
confidence = probs[pred_index].item() | |
suggestion = options[pred_index] if pred_index < len(options) else "N/A" | |
evo_reasoning = f"Evo suggests: **{suggestion}** (Confidence: {confidence:.2f})\n\nContext used:\n" + "\n".join(web_results) | |
return suggestion, evo_reasoning | |
def get_gpt_response(question, context, options): | |
openai.api_key = os.getenv("OPENAI_API_KEY", "") | |
formatted_options = "\n".join([f"{i+1}. {opt}" for i, opt in enumerate(options)]) | |
prompt = f"Question: {question}\n\nContext:\n{context}\n\nOptions:\n{formatted_options}\n\nWhich option makes the most sense and why?" | |
try: | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "You are a helpful reasoning assistant."}, | |
{"role": "user", "content": prompt} | |
] | |
) | |
return response['choices'][0]['message']['content'] | |
except Exception as e: | |
return f"⚠️ GPT error: {str(e)}" | |