Spaces:
Sleeping
Sleeping
import torch | |
from evo_model import EvoTransformer | |
from transformers import AutoTokenizer, pipeline | |
from rag_utils import RAGRetriever, extract_text_from_file | |
import os | |
# Load Evo model | |
def load_evo_model(model_path="evo_hellaswag.pt", device=None): | |
if device is None: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = EvoTransformer() | |
model.load_state_dict(torch.load(model_path, map_location=device)) | |
model.to(device) | |
model.eval() | |
return model, device | |
evo_model, device = load_evo_model() | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
# Load GPT-3.5 (via OpenAI API) | |
import openai | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
# RAG Retriever | |
retriever = RAGRetriever() | |
def get_context_from_file(file_obj): | |
file_path = file_obj.name | |
text = extract_text_from_file(file_path) | |
retriever.add_document(text) | |
return text | |
# Evo prediction | |
def get_evo_response(prompt, file=None): | |
# Step 1: augment context if document is uploaded | |
context = "" | |
if file is not None: | |
context_list = retriever.retrieve(prompt) | |
context = "\n".join(context_list) | |
full_prompt = f"{prompt}\n{context}" | |
# Step 2: use Evo to predict | |
options = ["Yes, proceed with the action.", "No, maintain current strategy."] | |
inputs = [f"{full_prompt} {opt}" for opt in options] | |
encoded = tokenizer(inputs, padding=True, truncation=True, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
logits = evo_model(encoded["input_ids"]).squeeze(-1) | |
probs = torch.softmax(logits, dim=0) | |
best = torch.argmax(probs).item() | |
return f"Evo suggests: {options[best]} (Confidence: {probs[best]:.2f})" | |
# GPT-3.5 response | |
def get_gpt_response(prompt, file=None): | |
context = "" | |
if file is not None: | |
context_list = retriever.retrieve(prompt) | |
context = "\n".join(context_list) | |
full_prompt = ( | |
f"Question: {prompt}\n" | |
f"Relevant Context:\n{context}\n" | |
f"Answer like a financial advisor." | |
) | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "user", "content": full_prompt} | |
], | |
temperature=0.4, | |
) | |
return response.choices[0].message.content.strip() | |
# | |