Spaces:
Sleeping
Sleeping
Update evo_model.py
Browse files- evo_model.py +3 -9
evo_model.py
CHANGED
@@ -3,7 +3,7 @@ import torch.nn as nn
|
|
3 |
import torch.nn.functional as F
|
4 |
|
5 |
class EvoEncoder(nn.Module):
|
6 |
-
def __init__(self, d_model=
|
7 |
super().__init__()
|
8 |
self.embedding = nn.Embedding(30522, d_model)
|
9 |
encoder_layer = nn.TransformerEncoderLayer(
|
@@ -14,20 +14,14 @@ class EvoEncoder(nn.Module):
|
|
14 |
)
|
15 |
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
16 |
self.memory_enabled = memory_enabled
|
17 |
-
if memory_enabled:
|
18 |
-
self.memory_proj = nn.Linear(d_model, d_model)
|
19 |
-
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
|
20 |
|
21 |
def forward(self, input_ids):
|
22 |
x = self.embedding(input_ids)
|
23 |
-
if self.memory_enabled:
|
24 |
-
mem = self.memory_token.expand(x.size(0), -1, -1)
|
25 |
-
x = torch.cat([mem, x], dim=1)
|
26 |
x = self.transformer(x)
|
27 |
-
return x[:, 0] #
|
28 |
|
29 |
class EvoTransformer(nn.Module):
|
30 |
-
def __init__(self, d_model=
|
31 |
super().__init__()
|
32 |
self.encoder = EvoEncoder(d_model, num_heads, ffn_dim, num_layers, memory_enabled)
|
33 |
self.classifier = nn.Linear(d_model, num_classes)
|
|
|
3 |
import torch.nn.functional as F
|
4 |
|
5 |
class EvoEncoder(nn.Module):
|
6 |
+
def __init__(self, d_model=384, num_heads=6, ffn_dim=1024, num_layers=6, memory_enabled=False):
|
7 |
super().__init__()
|
8 |
self.embedding = nn.Embedding(30522, d_model)
|
9 |
encoder_layer = nn.TransformerEncoderLayer(
|
|
|
14 |
)
|
15 |
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
16 |
self.memory_enabled = memory_enabled
|
|
|
|
|
|
|
17 |
|
18 |
def forward(self, input_ids):
|
19 |
x = self.embedding(input_ids)
|
|
|
|
|
|
|
20 |
x = self.transformer(x)
|
21 |
+
return x[:, 0] # first token
|
22 |
|
23 |
class EvoTransformer(nn.Module):
|
24 |
+
def __init__(self, d_model=384, num_heads=6, ffn_dim=1024, num_layers=6, num_classes=2, memory_enabled=False):
|
25 |
super().__init__()
|
26 |
self.encoder = EvoEncoder(d_model, num_heads, ffn_dim, num_layers, memory_enabled)
|
27 |
self.classifier = nn.Linear(d_model, num_classes)
|