HemanM commited on
Commit
1e2845c
·
verified ·
1 Parent(s): f87535f

Update evo_model.py

Browse files
Files changed (1) hide show
  1. evo_model.py +16 -25
evo_model.py CHANGED
@@ -5,31 +5,22 @@ from torch.nn import TransformerEncoder, TransformerEncoderLayer
5
  class EvoTransformer(nn.Module):
6
  def __init__(self, vocab_size=30522, d_model=512, nhead=8, num_layers=6, dim_feedforward=1024, dropout=0.1):
7
  super(EvoTransformer, self).__init__()
 
 
 
 
 
 
 
 
8
 
9
- class Encoder(nn.Module):
10
- def __init__(self):
11
- super().__init__()
12
- self.embedding = nn.Embedding(vocab_size, d_model)
13
- self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
14
-
15
- encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout)
16
- self.transformer = TransformerEncoder(encoder_layer, num_layers=num_layers)
17
-
18
- self.memory_proj = nn.Linear(d_model, d_model)
19
- self.norm = nn.LayerNorm(d_model)
20
-
21
- def forward(self, input_ids):
22
- x = self.embedding(input_ids)
23
- memory_token = self.memory_token.expand(x.size(0), -1, -1)
24
- x = torch.cat([memory_token, x], dim=1)
25
- x = self.transformer(x)
26
- x = self.norm(x)
27
- memory_output = self.memory_proj(x[:, 0])
28
- return memory_output
29
 
30
- self.encoder = Encoder()
31
- self.classifier = nn.Linear(d_model, 1) # For binary choice
32
 
33
- def forward(self, input_ids):
34
- x = self.encoder(input_ids)
35
- return x
 
5
  class EvoTransformer(nn.Module):
6
  def __init__(self, vocab_size=30522, d_model=512, nhead=8, num_layers=6, dim_feedforward=1024, dropout=0.1):
7
  super(EvoTransformer, self).__init__()
8
+ self.embedding = nn.Embedding(vocab_size, d_model)
9
+ self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
10
+
11
+ encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout)
12
+ self.transformer = TransformerEncoder(encoder_layer, num_layers=num_layers)
13
+
14
+ self.memory_proj = nn.Linear(d_model, d_model)
15
+ # 🔥 self.norm removed
16
 
17
+ def forward(self, input_ids):
18
+ x = self.embedding(input_ids)
19
+ memory_token = self.memory_token.expand(x.size(0), -1, -1)
20
+ x = torch.cat([memory_token, x], dim=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
+ x = self.transformer(x)
23
+ # 🔥 x = self.norm(x) removed
24
 
25
+ memory_output = self.memory_proj(x[:, 0])
26
+ return memory_output