Spaces:
Sleeping
Sleeping
Update inference.py
Browse files- inference.py +39 -56
inference.py
CHANGED
@@ -1,80 +1,63 @@
|
|
1 |
import torch
|
2 |
from evo_model import EvoTransformer
|
3 |
-
from transformers import AutoTokenizer
|
4 |
-
from rag_utils import
|
5 |
-
import
|
6 |
|
7 |
-
|
8 |
-
|
|
|
9 |
if device is None:
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
-
|
12 |
model = EvoTransformer()
|
13 |
model.load_state_dict(torch.load(model_path, map_location=device))
|
14 |
model.to(device)
|
15 |
model.eval()
|
16 |
return model, device
|
17 |
|
18 |
-
evo_model, device =
|
19 |
-
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
openai.api_key = os.getenv("OPENAI_API_KEY")
|
24 |
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
retriever.add_document(text)
|
32 |
-
return text
|
33 |
|
34 |
-
|
35 |
-
def get_evo_response(prompt, file=None):
|
36 |
-
# Step 1: augment context if document is uploaded
|
37 |
-
context = ""
|
38 |
-
if file is not None:
|
39 |
-
context_list = retriever.retrieve(prompt)
|
40 |
-
context = "\n".join(context_list)
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
inputs = [f"{full_prompt} {opt}" for opt in options]
|
47 |
|
48 |
encoded = tokenizer(inputs, padding=True, truncation=True, return_tensors="pt").to(device)
|
49 |
-
|
50 |
with torch.no_grad():
|
51 |
-
|
52 |
-
probs = torch.softmax(
|
53 |
best = torch.argmax(probs).item()
|
54 |
|
55 |
-
return f"
|
56 |
-
|
57 |
-
# GPT-3.5 response
|
58 |
-
def get_gpt_response(prompt, file=None):
|
59 |
-
context = ""
|
60 |
-
if file is not None:
|
61 |
-
context_list = retriever.retrieve(prompt)
|
62 |
-
context = "\n".join(context_list)
|
63 |
-
|
64 |
-
full_prompt = (
|
65 |
-
f"Question: {prompt}\n"
|
66 |
-
f"Relevant Context:\n{context}\n"
|
67 |
-
f"Answer like a financial advisor."
|
68 |
-
)
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
{"role": "user", "content": full_prompt}
|
74 |
-
],
|
75 |
-
temperature=0.4,
|
76 |
-
)
|
77 |
|
78 |
-
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from evo_model import EvoTransformer
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from rag_utils import extract_text_from_file
|
5 |
+
from search_utils import web_search
|
6 |
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
8 |
+
|
9 |
+
def load_model(model_path="evo_hellaswag.pt", device=None):
|
10 |
if device is None:
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
12 |
model = EvoTransformer()
|
13 |
model.load_state_dict(torch.load(model_path, map_location=device))
|
14 |
model.to(device)
|
15 |
model.eval()
|
16 |
return model, device
|
17 |
|
18 |
+
evo_model, device = load_model()
|
|
|
19 |
|
20 |
+
def get_evo_response(query, file=None, enable_search=True):
|
21 |
+
context = ""
|
|
|
22 |
|
23 |
+
if file:
|
24 |
+
try:
|
25 |
+
context += extract_text_from_file(file)[:800]
|
26 |
+
except:
|
27 |
+
pass
|
28 |
|
29 |
+
if enable_search:
|
30 |
+
search_snippets = web_search(query)
|
31 |
+
context += "\n".join(search_snippets)
|
|
|
|
|
32 |
|
33 |
+
combined_prompt = f"{query}\nContext:\n{context}"
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
inputs = [
|
36 |
+
f"{combined_prompt} Option 1:",
|
37 |
+
f"{combined_prompt} Option 2:",
|
38 |
+
]
|
|
|
39 |
|
40 |
encoded = tokenizer(inputs, padding=True, truncation=True, return_tensors="pt").to(device)
|
|
|
41 |
with torch.no_grad():
|
42 |
+
outputs = evo_model(encoded["input_ids"]).squeeze(-1)
|
43 |
+
probs = torch.softmax(outputs, dim=0)
|
44 |
best = torch.argmax(probs).item()
|
45 |
|
46 |
+
return f"Option {best + 1} with {probs[best]:.2%} confidence.\n\nReasoning:\n{inputs[best]}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
def get_gpt_response(query, context=""):
|
49 |
+
import openai
|
50 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
prompt = f"{query}\nContext:\n{context}\nGive a thoughtful recommendation with reasons."
|
53 |
|
54 |
+
try:
|
55 |
+
response = openai.ChatCompletion.create(
|
56 |
+
model="gpt-3.5-turbo",
|
57 |
+
messages=[{"role": "user", "content": prompt}],
|
58 |
+
max_tokens=300,
|
59 |
+
temperature=0.7,
|
60 |
+
)
|
61 |
+
return response.choices[0].message.content.strip()
|
62 |
+
except Exception as e:
|
63 |
+
return f"Error: {str(e)}"
|