HemanM commited on
Commit
38cb891
·
verified ·
1 Parent(s): a03a6ca

Update evo_model.py

Browse files
Files changed (1) hide show
  1. evo_model.py +20 -21
evo_model.py CHANGED
@@ -1,35 +1,34 @@
1
-
2
  import torch
3
-
4
  import torch.nn as nn
5
  from torch.nn import TransformerEncoder, TransformerEncoderLayer
6
 
7
  class EvoEncoder(nn.Module):
8
- def __init__(self, d_model=512, nhead=8, dim_feedforward=1024, num_layers=6, dropout=0.1):
9
- super().__init__()
10
- self.embedding = nn.Embedding(30522, d_model)
11
- self.positional_encoding = nn.Parameter(torch.zeros(1, 512, d_model))
12
- encoder_layers = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout)
13
- self.transformer = TransformerEncoder(encoder_layers, num_layers)
 
14
  self.norm = nn.LayerNorm(d_model)
15
  self.memory_proj = nn.Linear(d_model, d_model)
16
- self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
17
 
18
- def forward(self, input_ids):
19
- x = self.embedding(input_ids)
20
- x += self.positional_encoding[:, :x.size(1)]
21
- memory_token = self.memory_token.expand(x.size(0), -1, -1)
22
- x = torch.cat([memory_token, x], dim=1)
23
  x = self.transformer(x)
24
  x = self.norm(x)
25
- return self.memory_proj(x[:, 0, :])
 
26
 
27
  class EvoTransformer(nn.Module):
28
- def __init__(self):
29
- super().__init__()
30
- self.encoder = EvoEncoder()
31
- self.classifier = nn.Linear(512, 1)
 
 
32
 
33
  def forward(self, input_ids):
34
- x = self.encoder(input_ids)
35
- return x
 
 
 
1
  import torch
 
2
  import torch.nn as nn
3
  from torch.nn import TransformerEncoder, TransformerEncoderLayer
4
 
5
  class EvoEncoder(nn.Module):
6
+ def __init__(self, d_model=512, nhead=8, num_layers=6, dim_feedforward=1024, dropout=0.1):
7
+ super(EvoEncoder, self).__init__()
8
+ self.positional_encoding = nn.Parameter(torch.zeros(1, 512, d_model)) # Assuming max seq length = 512
9
+
10
+ encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead,
11
+ dim_feedforward=dim_feedforward, dropout=dropout)
12
+ self.transformer = TransformerEncoder(encoder_layer, num_layers=num_layers)
13
  self.norm = nn.LayerNorm(d_model)
14
  self.memory_proj = nn.Linear(d_model, d_model)
 
15
 
16
+ def forward(self, x):
17
+ x = x + self.positional_encoding[:, :x.size(1), :]
 
 
 
18
  x = self.transformer(x)
19
  x = self.norm(x)
20
+ memory_output = self.memory_proj(x[:, 0]) # Use first token
21
+ return memory_output
22
 
23
  class EvoTransformer(nn.Module):
24
+ def __init__(self, vocab_size=30522, d_model=512, nhead=8, num_layers=6,
25
+ dim_feedforward=1024, dropout=0.1):
26
+ super(EvoTransformer, self).__init__()
27
+ self.embedding = nn.Embedding(vocab_size, d_model)
28
+ self.encoder = EvoEncoder(d_model, nhead, num_layers, dim_feedforward, dropout)
29
+ self.classifier = nn.Linear(d_model, 1)
30
 
31
  def forward(self, input_ids):
32
+ x = self.embedding(input_ids)
33
+ memory_output = self.encoder(x)
34
+ return memory_output