HemanM commited on
Commit
3f8afcb
·
verified ·
1 Parent(s): 6f8dc16

Update inference.py

Browse files
Files changed (1) hide show
  1. inference.py +35 -56
inference.py CHANGED
@@ -1,57 +1,36 @@
 
 
1
  import torch
2
- from evo_model import EvoTransformer
3
- from transformers import AutoTokenizer
4
-
5
- # Load tokenizer and model
6
- tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
8
-
9
- def load_model(model_path="evo_hellaswag.pt"):
10
- model = EvoTransformer()
11
- model.load_state_dict(torch.load(model_path, map_location=device))
12
- model.to(device)
13
- model.eval()
14
- return model
15
-
16
- evo_model = load_model()
17
-
18
- def get_evo_response(prompt, option1, option2):
19
- inputs = [f"{prompt} {option1}", f"{prompt} {option2}"]
20
- encoded = tokenizer(inputs, padding=True, truncation=True, return_tensors="pt").to(device)
21
-
22
- with torch.no_grad():
23
- logits = evo_model(encoded["input_ids"]).squeeze(-1)
24
-
25
- probs = torch.softmax(logits, dim=0)
26
- best = torch.argmax(probs).item()
27
-
28
- explanations = [
29
- f"🅰️ Option 1: {option1}\nConfidence: {probs[0]:.2f}",
30
- f"🅱️ Option 2: {option2}\nConfidence: {probs[1]:.2f}"
31
- ]
32
-
33
- final = f"Evo suggests: Option {best + 1}\n\n{explanations[best]}"
34
- return final
35
-
36
- def get_gpt_response(prompt, option1, option2):
37
- import openai
38
- import os
39
- openai.api_key = os.getenv("OPENAI_API_KEY")
40
-
41
- full_prompt = (
42
- f"Question: {prompt}\n"
43
- f"Option 1: {option1}\n"
44
- f"Option 2: {option2}\n"
45
- "Which option makes more sense and why?"
46
- )
47
-
48
- try:
49
- response = openai.ChatCompletion.create(
50
- model="gpt-3.5-turbo",
51
- messages=[
52
- {"role": "user", "content": full_prompt}
53
- ]
54
- )
55
- return response.choices[0].message["content"].strip()
56
- except Exception as e:
57
- return f"GPT Error: {e}"
 
1
+ import os
2
+ import faiss
3
  import torch
4
+ from transformers import AutoTokenizer, AutoModel
5
+ from sentence_transformers import SentenceTransformer
6
+ from PyPDF2 import PdfReader
7
+
8
+ class RAGRetriever:
9
+ def __init__(self):
10
+ self.encoder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
11
+ self.index = faiss.IndexFlatL2(384)
12
+ self.contexts = []
13
+ self.ids = []
14
+
15
+ def add_document(self, text):
16
+ sentences = text.split("\n")
17
+ clean_sentences = [s.strip() for s in sentences if s.strip()]
18
+ embeddings = self.encoder.encode(clean_sentences)
19
+ self.index.add(embeddings)
20
+ self.contexts.extend(clean_sentences)
21
+
22
+ def retrieve(self, query, top_k=3):
23
+ q_vec = self.encoder.encode([query])
24
+ D, I = self.index.search(q_vec, top_k)
25
+ return [self.contexts[i] for i in I[0]]
26
+
27
+ def extract_text_from_file(file_path):
28
+ ext = os.path.splitext(file_path)[-1].lower()
29
+ if ext == ".txt":
30
+ with open(file_path, "r", encoding="utf-8") as f:
31
+ return f.read()
32
+ elif ext == ".pdf":
33
+ reader = PdfReader(file_path)
34
+ return "\n".join([page.extract_text() for page in reader.pages if page.extract_text()])
35
+ else:
36
+ return ""