Spaces:
Sleeping
Sleeping
Update inference.py
Browse files- inference.py +42 -43
inference.py
CHANGED
|
@@ -1,63 +1,62 @@
|
|
| 1 |
import torch
|
| 2 |
-
from evo_model import EvoTransformer
|
| 3 |
from transformers import AutoTokenizer
|
|
|
|
| 4 |
from rag_utils import extract_text_from_file
|
| 5 |
-
from search_utils import
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 8 |
|
| 9 |
-
def
|
| 10 |
-
|
| 11 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
-
model = EvoTransformer()
|
| 13 |
-
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 14 |
-
model.to(device)
|
| 15 |
-
model.eval()
|
| 16 |
-
return model, device
|
| 17 |
-
|
| 18 |
-
evo_model, device = load_model()
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
if file:
|
| 24 |
-
try:
|
| 25 |
-
context += extract_text_from_file(file)[:800]
|
| 26 |
-
except:
|
| 27 |
-
pass
|
| 28 |
|
| 29 |
if enable_search:
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
|
| 35 |
inputs = [
|
| 36 |
-
f"{
|
| 37 |
-
f"{
|
| 38 |
]
|
| 39 |
|
| 40 |
encoded = tokenizer(inputs, padding=True, truncation=True, return_tensors="pt").to(device)
|
| 41 |
with torch.no_grad():
|
| 42 |
-
|
| 43 |
-
probs = torch.softmax(
|
| 44 |
best = torch.argmax(probs).item()
|
| 45 |
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
def get_gpt_response(query, context=""):
|
| 49 |
import openai
|
| 50 |
-
openai.api_key =
|
| 51 |
-
|
| 52 |
-
prompt = f"{query}\nContext
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
temperature=0.7,
|
| 60 |
-
)
|
| 61 |
-
return response.choices[0].message.content.strip()
|
| 62 |
-
except Exception as e:
|
| 63 |
-
return f"Error: {str(e)}"
|
|
|
|
| 1 |
import torch
|
|
|
|
| 2 |
from transformers import AutoTokenizer
|
| 3 |
+
from evo_model import EvoTransformer
|
| 4 |
from rag_utils import extract_text_from_file
|
| 5 |
+
from search_utils import web_search_and_format
|
| 6 |
+
|
| 7 |
+
# Load Evo model and tokenizer
|
| 8 |
+
model_path = "evo_hellaswag.pt"
|
| 9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
model = EvoTransformer()
|
| 11 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 12 |
+
model.to(device)
|
| 13 |
+
model.eval()
|
| 14 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 15 |
|
| 16 |
+
def get_evo_response(query, context="", file=None, enable_search=True):
|
| 17 |
+
rag_context = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
if file is not None:
|
| 20 |
+
rag_context += extract_text_from_file(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
if enable_search:
|
| 23 |
+
search_context = web_search_and_format(query)
|
| 24 |
+
rag_context += "\n" + search_context
|
| 25 |
+
|
| 26 |
+
full_context = f"{context}\n{rag_context}".strip()
|
| 27 |
|
| 28 |
+
# Define hypothetical options (can be more sophisticated later)
|
| 29 |
+
option1 = "Yes, take action."
|
| 30 |
+
option2 = "No, do not take action."
|
| 31 |
|
| 32 |
inputs = [
|
| 33 |
+
f"Q: {query} Context: {full_context} A: {option1}",
|
| 34 |
+
f"Q: {query} Context: {full_context} A: {option2}",
|
| 35 |
]
|
| 36 |
|
| 37 |
encoded = tokenizer(inputs, padding=True, truncation=True, return_tensors="pt").to(device)
|
| 38 |
with torch.no_grad():
|
| 39 |
+
logits = model(encoded["input_ids"]).squeeze(-1)
|
| 40 |
+
probs = torch.softmax(logits, dim=0)
|
| 41 |
best = torch.argmax(probs).item()
|
| 42 |
|
| 43 |
+
answer = option1 if best == 0 else option2
|
| 44 |
+
reasoning = (
|
| 45 |
+
f"✅ Evo suggests: **{answer}**\n\n"
|
| 46 |
+
f"🧠 Confidence: {probs[best]:.2f}\n"
|
| 47 |
+
f"📖 Context used:\n{full_context[:1000]}..." # limit to 1000 chars
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
return answer, reasoning
|
| 51 |
|
| 52 |
def get_gpt_response(query, context=""):
|
| 53 |
import openai
|
| 54 |
+
openai.api_key = "sk-..." # Make sure to secure this
|
| 55 |
+
|
| 56 |
+
prompt = f"Q: {query}\nContext: {context}\nA:"
|
| 57 |
+
response = openai.ChatCompletion.create(
|
| 58 |
+
model="gpt-3.5-turbo",
|
| 59 |
+
messages=[{"role": "user", "content": prompt}],
|
| 60 |
+
temperature=0.3
|
| 61 |
+
)
|
| 62 |
+
return response["choices"][0]["message"]["content"].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|