HemanM commited on
Commit
75dd2e7
Β·
verified Β·
1 Parent(s): c7a764b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -22
app.py CHANGED
@@ -5,9 +5,8 @@ import retrain
5
  import pandas as pd
6
  import os
7
 
8
- # πŸ” Advisor core logic
9
- def advisor_interface(query, context, feedback_choice):
10
- evo_output, evo_reasoning = get_evo_response(query, context, enable_search=True)
11
  gpt_output = get_gpt_response(query, context)
12
 
13
  if feedback_choice != "No feedback":
@@ -16,44 +15,43 @@ def advisor_interface(query, context, feedback_choice):
16
 
17
  return evo_reasoning, gpt_output, load_history()
18
 
19
- # πŸ” Retrain logic
20
  def retrain_evo():
21
  retrain.fine_tune_on_feedback()
22
  return "βœ… Evo retrained on feedback.", load_history()
23
 
24
- # πŸ“œ Feedback log viewer
25
  def load_history():
26
  if os.path.exists("feedback_log.csv"):
27
  df = pd.read_csv("feedback_log.csv")
28
  return df.tail(10).to_markdown(index=False)
29
  return "No history available yet."
30
 
31
- # 🧠 UI
32
  with gr.Blocks() as demo:
33
- gr.Markdown("## 🧠 EvoRAG – Retrieval-Augmented Adaptive AI for Finance")
34
 
35
- with gr.Accordion("πŸ“Œ Ask a Financial Question", open=True):
36
- with gr.Row():
37
- query = gr.Textbox(label="πŸ“ Question", placeholder="e.g. Should we reduce exposure to Fund A?")
38
- with gr.Row():
39
- context = gr.Textbox(label="πŸ“‚ Memo, Policy, or News Context", placeholder="e.g. Tech Fund A underperformed by 3.2%...")
 
40
 
41
  with gr.Row():
42
- feedback = gr.Radio(["πŸ‘ Helpful", "πŸ‘Ž Not Helpful", "No feedback"], label="πŸ“Š Was Evo’s answer useful?", value="No feedback")
43
 
44
  with gr.Row():
45
- evo_out = gr.Textbox(label="πŸ”¬ EvoRAG Suggestion (with reasoning)", lines=4)
46
- gpt_out = gr.Textbox(label="πŸ€– GPT-3.5 Suggestion", lines=4)
 
 
 
47
 
48
- run_button = gr.Button("πŸš€ Run Advisors")
49
- run_button.click(fn=advisor_interface, inputs=[query, context, feedback], outputs=[evo_out, gpt_out, gr.Textbox(label="πŸ“œ Recent Feedback Log")])
50
 
51
  gr.Markdown("---")
 
 
 
52
 
53
- with gr.Accordion("πŸ” Evo Live Retraining", open=False):
54
- retrain_button = gr.Button("πŸ“š Retrain Evo Now from Feedback")
55
- retrain_output = gr.Textbox(label="πŸ› οΈ Retrain Status", interactive=False)
56
- history_output = gr.Textbox(label="πŸ“œ Recent Feedback Log", interactive=False)
57
- retrain_button.click(fn=retrain_evo, inputs=[], outputs=[retrain_output, history_output])
58
 
59
  demo.launch()
 
5
  import pandas as pd
6
  import os
7
 
8
+ def advisor_interface(query, context, file, feedback_choice):
9
+ evo_output, evo_reasoning = get_evo_response(query, context, file)
 
10
  gpt_output = get_gpt_response(query, context)
11
 
12
  if feedback_choice != "No feedback":
 
15
 
16
  return evo_reasoning, gpt_output, load_history()
17
 
 
18
  def retrain_evo():
19
  retrain.fine_tune_on_feedback()
20
  return "βœ… Evo retrained on feedback.", load_history()
21
 
 
22
  def load_history():
23
  if os.path.exists("feedback_log.csv"):
24
  df = pd.read_csv("feedback_log.csv")
25
  return df.tail(10).to_markdown(index=False)
26
  return "No history available yet."
27
 
 
28
  with gr.Blocks() as demo:
29
+ gr.Markdown("## 🧠 EvoRAG – Retrieval-Augmented Adaptive AI (General Purpose)")
30
 
31
+ with gr.Row():
32
+ query = gr.Textbox(label="πŸ“ Ask any question", placeholder="e.g. What are the effects of inflation?")
33
+ context = gr.Textbox(label="πŸ“‚ Optional background notes or memos", placeholder="Paste policy, notes, or ideas...")
34
+
35
+ with gr.Row():
36
+ file = gr.File(label="πŸ“Ž Upload optional file (.txt or .pdf)", file_types=[".txt", ".pdf"])
37
 
38
  with gr.Row():
39
+ feedback = gr.Radio(["πŸ‘ Helpful", "πŸ‘Ž Not Helpful", "No feedback"], label="Was Evo’s answer useful?", value="No feedback")
40
 
41
  with gr.Row():
42
+ evo_out = gr.Textbox(label="πŸ”¬ EvoRAG Suggestion (with reasoning)", lines=6)
43
+ gpt_out = gr.Textbox(label="πŸ€– GPT-3.5 Suggestion", lines=6)
44
+
45
+ run_button = gr.Button("Run Advisors")
46
+ history_output = gr.Textbox(label="πŸ“œ Recent History")
47
 
48
+ run_button.click(fn=advisor_interface, inputs=[query, context, file, feedback], outputs=[evo_out, gpt_out, history_output])
 
49
 
50
  gr.Markdown("---")
51
+ gr.Markdown("### πŸ” Retrain Evo on Feedback")
52
+ retrain_button = gr.Button("πŸ“š Retrain Evo")
53
+ retrain_status = gr.Textbox(label="πŸ› οΈ Retrain Status")
54
 
55
+ retrain_button.click(fn=retrain_evo, inputs=[], outputs=[retrain_status, history_output])
 
 
 
 
56
 
57
  demo.launch()