Spaces:
Sleeping
Sleeping
Update inference.py
Browse files- inference.py +36 -0
inference.py
CHANGED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from evo_model import EvoTransformer
|
| 3 |
+
|
| 4 |
+
# Load EvoTransformer model
|
| 5 |
+
def load_model(model_path="evo_hellaswag.pt", device=None):
|
| 6 |
+
if device is None:
|
| 7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
+
|
| 9 |
+
model = EvoTransformer()
|
| 10 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 11 |
+
model.to(device)
|
| 12 |
+
model.eval()
|
| 13 |
+
return model, device
|
| 14 |
+
|
| 15 |
+
# Predict the best option (0 or 1)
|
| 16 |
+
def predict(model, tokenizer, prompt, option1, option2, device):
|
| 17 |
+
inputs = [
|
| 18 |
+
f"{prompt} {option1}",
|
| 19 |
+
f"{prompt} {option2}",
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
+
encoded = tokenizer(inputs, padding=True, truncation=True, return_tensors="pt").to(device)
|
| 23 |
+
|
| 24 |
+
with torch.no_grad():
|
| 25 |
+
outputs = model(encoded["input_ids"])
|
| 26 |
+
|
| 27 |
+
# Simple linear classifier logic
|
| 28 |
+
logits = torch.nn.functional.linear(outputs, model.classifier.weight, model.classifier.bias)
|
| 29 |
+
probs = torch.softmax(logits, dim=1)
|
| 30 |
+
best = torch.argmax(probs).item()
|
| 31 |
+
|
| 32 |
+
return {
|
| 33 |
+
"choice": best,
|
| 34 |
+
"confidence": probs[0][best].item(),
|
| 35 |
+
"scores": probs[0].tolist(),
|
| 36 |
+
}
|