Spaces:
Sleeping
Sleeping
Create retrain.py
Browse files- retrain.py +52 -0
retrain.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pandas as pd
|
3 |
+
from torch.utils.data import Dataset, DataLoader
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
from evo_model import EvoTransformer
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.optim as optim
|
8 |
+
|
9 |
+
class FeedbackDataset(Dataset):
|
10 |
+
def __init__(self, csv_file):
|
11 |
+
self.data = pd.read_csv(csv_file).dropna()
|
12 |
+
self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
13 |
+
|
14 |
+
def __len__(self):
|
15 |
+
return len(self.data)
|
16 |
+
|
17 |
+
def __getitem__(self, idx):
|
18 |
+
row = self.data.iloc[idx]
|
19 |
+
prompt = row['prompt']
|
20 |
+
context = row['context']
|
21 |
+
label = int(row['label'])
|
22 |
+
text = f"{prompt} {context}"
|
23 |
+
encoded = self.tokenizer(text, truncation=True, padding='max_length', max_length=128, return_tensors="pt")
|
24 |
+
return encoded['input_ids'].squeeze(0), torch.tensor(label)
|
25 |
+
|
26 |
+
def fine_tune_on_feedback():
|
27 |
+
csv_file = "feedback_log.csv"
|
28 |
+
dataset = FeedbackDataset(csv_file)
|
29 |
+
dataloader = DataLoader(dataset, batch_size=8, shuffle=True)
|
30 |
+
|
31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
model = EvoTransformer().to(device)
|
33 |
+
model.load_state_dict(torch.load("evo_hellaswag.pt", map_location=device))
|
34 |
+
model.train()
|
35 |
+
|
36 |
+
criterion = nn.CrossEntropyLoss()
|
37 |
+
optimizer = optim.Adam(model.parameters(), lr=2e-5)
|
38 |
+
|
39 |
+
for epoch in range(2):
|
40 |
+
for input_ids, labels in dataloader:
|
41 |
+
input_ids = input_ids.to(device)
|
42 |
+
labels = labels.to(device)
|
43 |
+
|
44 |
+
outputs = model(input_ids)
|
45 |
+
loss = criterion(outputs, labels)
|
46 |
+
|
47 |
+
optimizer.zero_grad()
|
48 |
+
loss.backward()
|
49 |
+
optimizer.step()
|
50 |
+
|
51 |
+
torch.save(model.state_dict(), "evo_hellaswag.pt")
|
52 |
+
print("✅ Evo retrained and saved.")
|