Spaces:
Sleeping
Sleeping
Update evo_model.py
Browse files- evo_model.py +18 -19
evo_model.py
CHANGED
@@ -1,10 +1,18 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
|
|
3 |
|
4 |
class EvoEncoder(nn.Module):
|
5 |
-
def __init__(self, d_model=
|
6 |
super().__init__()
|
7 |
self.embedding = nn.Embedding(30522, d_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
encoder_layer = nn.TransformerEncoderLayer(
|
9 |
d_model=d_model,
|
10 |
nhead=num_heads,
|
@@ -12,34 +20,25 @@ class EvoEncoder(nn.Module):
|
|
12 |
batch_first=True
|
13 |
)
|
14 |
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
15 |
-
self.memory_enabled = memory_enabled
|
16 |
-
if memory_enabled:
|
17 |
-
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
|
18 |
-
self.memory_proj = nn.Linear(d_model, d_model)
|
19 |
|
20 |
def forward(self, input_ids):
|
21 |
x = self.embedding(input_ids)
|
22 |
-
|
23 |
-
|
|
|
24 |
x = torch.cat([mem, x], dim=1)
|
|
|
25 |
x = self.transformer(x)
|
26 |
return x
|
27 |
|
28 |
class EvoTransformerV22(nn.Module):
|
29 |
def __init__(self):
|
30 |
super().__init__()
|
31 |
-
self.encoder = EvoEncoder(
|
32 |
-
|
33 |
-
|
34 |
-
ffn_dim=1024,
|
35 |
-
num_layers=6,
|
36 |
-
memory_enabled=True
|
37 |
-
)
|
38 |
-
self.pooling = nn.AdaptiveAvgPool1d(1)
|
39 |
-
self.classifier = nn.Linear(384, 2)
|
40 |
|
41 |
def forward(self, input_ids):
|
42 |
x = self.encoder(input_ids)
|
43 |
-
x = x.
|
44 |
-
|
45 |
-
return self.classifier(x)
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
|
5 |
class EvoEncoder(nn.Module):
|
6 |
+
def __init__(self, d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, memory_enabled=True):
|
7 |
super().__init__()
|
8 |
self.embedding = nn.Embedding(30522, d_model)
|
9 |
+
self.memory_enabled = memory_enabled
|
10 |
+
if memory_enabled:
|
11 |
+
self.memory_proj = nn.Linear(d_model, d_model)
|
12 |
+
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
|
13 |
+
else:
|
14 |
+
self.memory_token = None
|
15 |
+
|
16 |
encoder_layer = nn.TransformerEncoderLayer(
|
17 |
d_model=d_model,
|
18 |
nhead=num_heads,
|
|
|
20 |
batch_first=True
|
21 |
)
|
22 |
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def forward(self, input_ids):
|
25 |
x = self.embedding(input_ids)
|
26 |
+
|
27 |
+
if self.memory_enabled and self.memory_token is not None:
|
28 |
+
mem = self.memory_token.expand(x.size(0), 1, x.size(2))
|
29 |
x = torch.cat([mem, x], dim=1)
|
30 |
+
|
31 |
x = self.transformer(x)
|
32 |
return x
|
33 |
|
34 |
class EvoTransformerV22(nn.Module):
|
35 |
def __init__(self):
|
36 |
super().__init__()
|
37 |
+
self.encoder = EvoEncoder(d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, memory_enabled=True)
|
38 |
+
self.pool = nn.AdaptiveAvgPool1d(1)
|
39 |
+
self.classifier = nn.Linear(512, 1) # ✅ Matches checkpoint
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
def forward(self, input_ids):
|
42 |
x = self.encoder(input_ids)
|
43 |
+
x = self.pool(x.transpose(1, 2)).squeeze(-1)
|
44 |
+
return self.classifier(x) # Output: [batch_size, 1]
|
|