import torch import torch.nn as nn from torch.nn import TransformerEncoder, TransformerEncoderLayer class EvoTransformer(nn.Module): def __init__(self, vocab_size=30522, d_model=512, nhead=8, num_layers=6, dim_feedforward=1024, dropout=0.1): super(EvoTransformer, self).__init__() self.embedding = nn.Embedding(vocab_size, d_model) self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model)) encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout) self.transformer = TransformerEncoder(encoder_layer, num_layers=num_layers) self.memory_proj = nn.Linear(d_model, d_model) self.norm = nn.LayerNorm(d_model) self.classifier = nn.Linear(d_model, 1) # Matches saved model: output is a single logit def forward(self, input_ids): x = self.embedding(input_ids) memory_token = self.memory_token.expand(x.size(0), -1, -1) x = torch.cat([memory_token, x], dim=1) x = self.transformer(x) x = self.norm(x) memory_output = self.memory_proj(x[:, 0]) return memory_output