import torch from evo_model import EvoTransformer from transformers import AutoTokenizer, pipeline from rag_utils import RAGRetriever, extract_text_from_file import os # Load Evo model def load_evo_model(model_path="evo_hellaswag.pt", device=None): if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" model = EvoTransformer() model.load_state_dict(torch.load(model_path, map_location=device)) model.to(device) model.eval() return model, device evo_model, device = load_evo_model() tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") # Load GPT-3.5 (via OpenAI API) import openai openai.api_key = os.getenv("OPENAI_API_KEY") # RAG Retriever retriever = RAGRetriever() def get_context_from_file(file_obj): file_path = file_obj.name text = extract_text_from_file(file_path) retriever.add_document(text) return text # Evo prediction def get_evo_response(prompt, file=None): # Step 1: augment context if document is uploaded context = "" if file is not None: context_list = retriever.retrieve(prompt) context = "\n".join(context_list) full_prompt = f"{prompt}\n{context}" # Step 2: use Evo to predict options = ["Yes, proceed with the action.", "No, maintain current strategy."] inputs = [f"{full_prompt} {opt}" for opt in options] encoded = tokenizer(inputs, padding=True, truncation=True, return_tensors="pt").to(device) with torch.no_grad(): logits = evo_model(encoded["input_ids"]).squeeze(-1) probs = torch.softmax(logits, dim=0) best = torch.argmax(probs).item() return f"Evo suggests: {options[best]} (Confidence: {probs[best]:.2f})" # GPT-3.5 response def get_gpt_response(prompt, file=None): context = "" if file is not None: context_list = retriever.retrieve(prompt) context = "\n".join(context_list) full_prompt = ( f"Question: {prompt}\n" f"Relevant Context:\n{context}\n" f"Answer like a financial advisor." ) response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "user", "content": full_prompt} ], temperature=0.4, ) return response.choices[0].message.content.strip() #