import torch import torch.nn as nn import torch.nn.functional as F class EvoEncoder(nn.Module): def __init__(self, d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, memory_enabled=True): super().__init__() self.embedding = nn.Embedding(30522, d_model) encoder_layer = nn.TransformerEncoderLayer( d_model=d_model, nhead=num_heads, dim_feedforward=ffn_dim, batch_first=True ) self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) self.memory_enabled = memory_enabled if memory_enabled: self.memory_proj = nn.Linear(d_model, d_model) self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model)) def forward(self, input_ids): x = self.embedding(input_ids) if self.memory_enabled: mem = self.memory_token.expand(x.size(0), -1, -1) x = torch.cat([mem, x], dim=1) x = self.transformer(x) return x[:, 0] # Return memory token or first token class EvoTransformer(nn.Module): def __init__(self, d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, num_classes=1, memory_enabled=True): super().__init__() self.encoder = EvoEncoder(d_model, num_heads, ffn_dim, num_layers, memory_enabled) self.classifier = nn.Linear(d_model, num_classes) def forward(self, input_ids): x = self.encoder(input_ids) return self.classifier(x)