import torch import openai import os from transformers import AutoTokenizer from evo_model import EvoTransformerV22 from rag_utils import extract_text_from_file from search_utils import web_search tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") model = EvoTransformerV22() model.load_state_dict(torch.load("evo_hellaswag.pt", map_location="cpu")) model.eval() def format_input(question, options, context, web_results): prompt = f"{question}\n" if context: prompt += f"\nContext:\n{context}\n" if web_results: prompt += f"\nWeb Search Results:\n" + "\n".join(web_results) prompt += "\nOptions:\n" for idx, opt in enumerate(options): prompt += f"{idx+1}. {opt}\n" return prompt.strip() def get_evo_response(question, context, options, enable_search=True): web_results = web_search(question) if enable_search else [] input_text = format_input(question, options, context, web_results) encoded = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=256) with torch.no_grad(): logits = model(encoded["input_ids"]) probs = torch.softmax(logits, dim=1).squeeze() pred_index = torch.argmax(probs).item() confidence = probs[pred_index].item() suggestion = options[pred_index] if pred_index < len(options) else "N/A" evo_reasoning = f"Evo suggests: **{suggestion}** (Confidence: {confidence:.2f})\n\nContext used:\n" + "\n".join(web_results) return suggestion, evo_reasoning def get_gpt_response(question, context, options): openai.api_key = os.getenv("OPENAI_API_KEY", "") formatted_options = "\n".join([f"{i+1}. {opt}" for i, opt in enumerate(options)]) prompt = f"Question: {question}\n\nContext:\n{context}\n\nOptions:\n{formatted_options}\n\nWhich option makes the most sense and why?" try: response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful reasoning assistant."}, {"role": "user", "content": prompt} ] ) return response['choices'][0]['message']['content'] except Exception as e: return f"⚠️ GPT error: {str(e)}"