EvoPlatformV3 / inference.py
HemanM's picture
Update inference.py
819cc50 verified
raw
history blame
5.31 kB
import os
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer
from evo_model import EvoTransformerV22
from search_utils import web_search
import openai
import time
import psutil
import platform
openai.api_key = os.getenv("OPENAI_API_KEY")
MODEL_PATH = "evo_hellaswag.pt"
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = None
last_mod_time = 0
# ๐Ÿ” Load Evo model with auto-reload
def load_model():
global model, last_mod_time
try:
current_mod_time = os.path.getmtime(MODEL_PATH)
if model is None or current_mod_time > last_mod_time:
model = EvoTransformerV22()
model.load_state_dict(torch.load(MODEL_PATH, map_location="cpu"))
model.eval()
last_mod_time = current_mod_time
print("โœ… Evo model loaded.")
except Exception as e:
print(f"โŒ Error loading Evo model: {e}")
model = None
return model
# ๐Ÿ”ฎ Evo inference core logic
def evo_infer(query, options, user_context=""):
model = load_model()
if model is None:
return "Model Error", 0.0, "Model not available", ""
def is_fact_or_math(q):
q_lower = q.lower()
return any(char.isdigit() for char in q_lower) or any(op in q_lower for op in ["+", "-", "*", "/", "=", "what is", "solve", "calculate"])
if is_fact_or_math(query):
context_str = user_context or ""
else:
search_results = web_search(query)
context_str = "\n".join(search_results + ([user_context] if user_context else []))
input_pairs = [f"{query} [SEP] {opt} [CTX] {context_str}" for opt in options]
scores = []
for pair in input_pairs:
encoded = tokenizer(pair, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
with torch.no_grad():
logits = model(encoded["input_ids"])
score = torch.sigmoid(logits).item()
scores.append(score)
best_idx = int(scores[1] > scores[0])
return (
options[best_idx],
max(scores),
f"{options[0]}: {scores[0]:.3f} vs {options[1]}: {scores[1]:.3f}",
context_str
)
# ๐Ÿค– GPT fallback (for comparison)
def get_gpt_response(query, user_context=""):
try:
context_block = f"\n\nContext:\n{user_context}" if user_context else ""
response = openai.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": query + context_block}],
temperature=0.7,
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"โš ๏ธ GPT error:\n{str(e)}"
# ๐Ÿง  Live Evo prediction logic
def evo_chat_predict(history, query, options):
try:
if isinstance(history, list):
context = "\n".join(history[-6:])
elif hasattr(history, "empty") and not history.empty:
context = "\n".join(history.tail(6).astype(str).tolist())
else:
context = ""
except Exception:
context = ""
evo_ans, evo_score, evo_reason, evo_ctx = evo_infer(query, options, context)
return {
"answer": evo_ans,
"confidence": round(evo_score, 3),
"reasoning": evo_reason,
"context_used": evo_ctx
}
# ๐Ÿ“Š Evo model config metadata
def get_model_config():
return {
"num_layers": 6,
"num_heads": 8,
"ffn_dim": 1024,
"memory_enabled": True,
"phase": "v2.2",
"accuracy": "~64.5%"
}
# ๐Ÿ–ฅ๏ธ Runtime stats
def get_system_stats():
gpu_info = torch.cuda.get_device_properties(0) if torch.cuda.is_available() else None
memory = psutil.virtual_memory()
return {
"device": "GPU" if torch.cuda.is_available() else "CPU",
"cpu_usage_percent": psutil.cpu_percent(),
"memory_used_gb": round(memory.used / (1024 ** 3), 2),
"memory_total_gb": round(memory.total / (1024 ** 3), 2),
"gpu_name": gpu_info.name if gpu_info else "N/A",
"gpu_memory_total_gb": round(gpu_info.total_memory / (1024 ** 3), 2) if gpu_info else "N/A",
"gpu_memory_used_gb": round(torch.cuda.memory_allocated() / (1024 ** 3), 2) if gpu_info else "N/A",
"platform": platform.platform()
}
# ๐Ÿ” Retrain from in-memory feedback_log
def retrain_from_feedback(feedback_log):
if not feedback_log:
return "โš ๏ธ No feedback data to retrain from."
model = load_model()
if model is None:
return "โŒ Evo model not available."
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for row in feedback_log:
question, opt1, opt2, answer, *_ = row
label = torch.tensor([1.0 if answer.strip() == opt2.strip() else 0.0]) # opt2 = class 1
input_text = f"{question} [SEP] {opt2 if label.item() == 1 else opt1}"
encoded = tokenizer(input_text, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
logits = model(encoded["input_ids"])
loss = F.binary_cross_entropy_with_logits(logits.squeeze(), label)
loss.backward()
optimizer.step()
optimizer.zero_grad()
torch.save(model.state_dict(), MODEL_PATH)
return "โœ… Evo retrained and reloaded from memory."