Spaces:
Sleeping
Sleeping
| import os | |
| import faiss | |
| import torch | |
| from transformers import AutoTokenizer, AutoModel | |
| from sentence_transformers import SentenceTransformer | |
| from PyPDF2 import PdfReader | |
| class RAGRetriever: | |
| def __init__(self): | |
| self.encoder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") | |
| self.index = faiss.IndexFlatL2(384) | |
| self.contexts = [] | |
| self.ids = [] | |
| def add_document(self, text): | |
| sentences = text.split("\n") | |
| clean_sentences = [s.strip() for s in sentences if s.strip()] | |
| embeddings = self.encoder.encode(clean_sentences) | |
| self.index.add(embeddings) | |
| self.contexts.extend(clean_sentences) | |
| def retrieve(self, query, top_k=3): | |
| q_vec = self.encoder.encode([query]) | |
| D, I = self.index.search(q_vec, top_k) | |
| return [self.contexts[i] for i in I[0]] | |
| def extract_text_from_file(file_path): | |
| ext = os.path.splitext(file_path)[-1].lower() | |
| if ext == ".txt": | |
| with open(file_path, "r", encoding="utf-8") as f: | |
| return f.read() | |
| elif ext == ".pdf": | |
| reader = PdfReader(file_path) | |
| return "\n".join([page.extract_text() for page in reader.pages if page.extract_text()]) | |
| else: | |
| return "" | |