EvoPlatformV3 / inference.py
HemanM's picture
Update inference.py
c7a764b verified
raw
history blame
2.22 kB
import torch
from transformers import AutoTokenizer
from evo_model import EvoTransformer
from rag_utils import extract_text_from_file
from search_utils import web_search_and_format
# Load Evo model and tokenizer
model_path = "evo_hellaswag.pt"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = EvoTransformer()
model.load_state_dict(torch.load(model_path, map_location=device))
model.to(device)
model.eval()
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def get_evo_response(query, context="", file=None, enable_search=True):
rag_context = ""
if file is not None:
rag_context += extract_text_from_file(file)
if enable_search:
search_context = web_search_and_format(query)
rag_context += "\n" + search_context
full_context = f"{context}\n{rag_context}".strip()
# Define hypothetical options (can be more sophisticated later)
option1 = "Yes, take action."
option2 = "No, do not take action."
inputs = [
f"Q: {query} Context: {full_context} A: {option1}",
f"Q: {query} Context: {full_context} A: {option2}",
]
encoded = tokenizer(inputs, padding=True, truncation=True, return_tensors="pt").to(device)
with torch.no_grad():
logits = model(encoded["input_ids"]).squeeze(-1)
probs = torch.softmax(logits, dim=0)
best = torch.argmax(probs).item()
answer = option1 if best == 0 else option2
reasoning = (
f"✅ Evo suggests: **{answer}**\n\n"
f"🧠 Confidence: {probs[best]:.2f}\n"
f"📖 Context used:\n{full_context[:1000]}..." # limit to 1000 chars
)
return answer, reasoning
def get_gpt_response(query, context=""):
import openai
openai.api_key = "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" # Make sure to secure this
prompt = f"Q: {query}\nContext: {context}\nA:"
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
temperature=0.3
)
return response["choices"][0]["message"]["content"].strip()