Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,240 +1,63 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
from inference import get_evo_response, get_gpt_response
|
4 |
-
from logger import log_feedback
|
5 |
-
import csv
|
6 |
import subprocess
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
entries = []
|
11 |
-
if os.path.exists("feedback_log.csv"):
|
12 |
-
with open("feedback_log.csv", newline='', encoding='utf-8') as f:
|
13 |
-
reader = csv.DictReader(f)
|
14 |
-
for row in reader:
|
15 |
-
try:
|
16 |
-
score = float(row.get("evo_was_correct", "0") == "yes")
|
17 |
-
if "π" in row.get("feedback", "") or score > 0.85:
|
18 |
-
entries.append(row)
|
19 |
-
except:
|
20 |
-
continue
|
21 |
-
return entries[-10:][::-1] # last 10, reverse order
|
22 |
-
|
23 |
-
def handle_query(question, option1, option2, context):
|
24 |
-
options = [option1, option2]
|
25 |
-
evo_answer, evo_reasoning, evo_score, evo_context = get_evo_response(question, options, context)
|
26 |
-
gpt_answer = get_gpt_response(question, context)
|
27 |
-
return (
|
28 |
-
f"Answer: {evo_answer} (Confidence: {evo_score:.2f})\n\nReasoning: {evo_reasoning}\n\nContext used: {evo_context[:400]}...",
|
29 |
-
gpt_answer,
|
30 |
-
f"{question} | {context} | {evo_answer}"
|
31 |
-
)
|
32 |
-
|
33 |
-
def handle_feedback(feedback_text, question, option1, option2, context, evo_output):
|
34 |
-
evo_was_correct = "π" in feedback_text
|
35 |
-
log_feedback(question, option1, option2, context, evo_output, evo_was_correct)
|
36 |
-
return "β
Feedback logged and Evo will improve."
|
37 |
-
|
38 |
-
def trigger_retrain():
|
39 |
-
try:
|
40 |
-
subprocess.run(["python", "retrain_from_feedback.py"], check=True)
|
41 |
-
return "π Evo retraining completed."
|
42 |
-
except subprocess.CalledProcessError:
|
43 |
-
return "β Retraining failed. Check logs."
|
44 |
-
|
45 |
-
def render_hof():
|
46 |
-
entries = load_hall_of_fame()
|
47 |
-
if not entries:
|
48 |
-
return "No Hall of Fame entries yet. Submit feedback!"
|
49 |
-
result = "\n\n".join(
|
50 |
-
[
|
51 |
-
f"π **Q:** {e['question']}\n**A:** {e['evo_output']}\n**Feedback:** {e.get('feedback', 'N/A')}\n**Context:** {e['context'][:200]}..."
|
52 |
-
for e in entries
|
53 |
-
]
|
54 |
-
)
|
55 |
-
return result
|
56 |
-
|
57 |
-
description = """
|
58 |
-
# π§ EvoRAG β Adaptive Reasoning AI
|
59 |
-
|
60 |
-
**What is Evo?**
|
61 |
-
EvoTransformer is a lightweight, evolving neural network with ~28M parameters.
|
62 |
-
It learns from feedback, adapts over time, and reasons using both web and context data.
|
63 |
-
|
64 |
-
**Why Evo?**
|
65 |
-
β
Evolves from human input
|
66 |
-
β
Architecturally updatable
|
67 |
-
β
Transparent and fine-tunable
|
68 |
-
β
Efficient on modest hardware
|
69 |
-
|
70 |
-
**Hardware**: Trained on Google Colab CPU/GPU
|
71 |
-
**Token limit**: 128
|
72 |
-
**Benchmark**: PIQA, HellaSwag, ARC
|
73 |
-
**Version**: Evo v2.2 (Memory + Web Retrieval + Feedback Learning)
|
74 |
-
"""
|
75 |
-
|
76 |
-
with gr.Blocks(title="EvoRAG") as demo:
|
77 |
-
gr.Markdown(description)
|
78 |
-
with gr.Row():
|
79 |
-
question = gr.Textbox(label="π Ask anything", placeholder="e.g., Whatβs the best way to escape a house fire?")
|
80 |
-
with gr.Row():
|
81 |
-
option1 = gr.Textbox(label="Option A", placeholder="e.g., Run outside")
|
82 |
-
option2 = gr.Textbox(label="Option B", placeholder="e.g., Hide under bed")
|
83 |
-
context = gr.Textbox(label="π Optional Context", placeholder="Paste any extra background info here", lines=3)
|
84 |
-
|
85 |
-
submit_btn = gr.Button("π Run Comparison")
|
86 |
-
with gr.Row():
|
87 |
-
evo_output = gr.Textbox(label="π§ EvoRAG's Reasoned Answer", lines=6)
|
88 |
-
gpt_output = gr.Textbox(label="π€ GPT-3.5's Suggestion", lines=6)
|
89 |
-
|
90 |
-
feedback = gr.Radio(["π Evo was correct. Retrain from this.", "π Evo was wrong. Don't retrain."], label="Was Evoβs answer useful?", value=None)
|
91 |
-
submit_feedback = gr.Button("π¬ Submit Feedback")
|
92 |
-
feedback_status = gr.Textbox(label="Feedback Status", interactive=False)
|
93 |
-
|
94 |
-
retrain_button = gr.Button("π Retrain Evo Now")
|
95 |
-
retrain_status = gr.Textbox(label="Retraining Status", interactive=False)
|
96 |
-
|
97 |
-
with gr.Accordion("π Evo Hall of Fame (Top Reasoning Entries)", open=False):
|
98 |
-
hof_display = gr.Markdown(render_hof())
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
inputs=[feedback, question, option1, option2, context, feedback_status],
|
104 |
-
outputs=[feedback_status]
|
105 |
-
)
|
106 |
-
retrain_button.click(fn=trigger_retrain, inputs=[], outputs=[retrain_status])
|
107 |
|
108 |
-
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
import time
|
113 |
-
import os
|
114 |
-
from inference import load_model_and_tokenizer, infer
|
115 |
-
from logger import log_feedback
|
116 |
-
from retrain_from_feedback import train_evo
|
117 |
-
from datetime import datetime
|
118 |
-
from inference import get_gpt_response
|
119 |
-
|
120 |
-
# Globals
|
121 |
-
model, tokenizer = load_model_and_tokenizer()
|
122 |
-
|
123 |
-
# Helper to reload model
|
124 |
-
def reload_model():
|
125 |
-
global model, tokenizer
|
126 |
-
model, tokenizer = load_model_and_tokenizer()
|
127 |
|
128 |
-
#
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
return f.read().strip()
|
133 |
-
return "Never"
|
134 |
|
135 |
-
|
136 |
-
def get_model_summary():
|
137 |
-
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
138 |
-
summary = f"""
|
139 |
-
β’ π’ Parameters: {num_params:,}
|
140 |
-
β’ π§± Layers: 6 TransformerEncoder
|
141 |
-
β’ π― Attention Heads: 8
|
142 |
-
β’ π§ FFN Dim: 1024
|
143 |
-
⒠𧬠Memory Module: Enabled
|
144 |
-
β’ βοΈ Pooling: AdaptiveAvgPool1d
|
145 |
-
β’ π§Ύ Classifier: Linear(512 β 1)
|
146 |
-
"""
|
147 |
-
return summary.strip()
|
148 |
|
149 |
-
#
|
150 |
-
def
|
151 |
-
|
152 |
-
|
153 |
-
return
|
154 |
-
f"Answer: {evo_ans} (Confidence: {evo_score:.2f})\n\nReasoning: {evo_reason}\n\nContext used: {evo_ctx}",
|
155 |
-
gpt_ans
|
156 |
-
)
|
157 |
|
158 |
-
#
|
159 |
-
def
|
160 |
-
evo_was_correct = feedback_text.strip().lower() == "π evo was correct. retrain from this."
|
161 |
-
log_feedback(question, option1, option2, context, evo_output, evo_was_correct)
|
162 |
-
return "β
Feedback logged and Evo will improve."
|
163 |
-
|
164 |
-
# Manual retrain
|
165 |
-
def manual_retrain():
|
166 |
try:
|
167 |
-
|
168 |
-
|
169 |
-
ts = datetime.utcnow().strftime("%Y-%m-%d %H:%M GMT")
|
170 |
-
with open("last_updated.txt", "w") as f:
|
171 |
-
f.write(ts)
|
172 |
-
return f"β
Evo successfully evolved! Reloaded at {ts}"
|
173 |
except Exception as e:
|
174 |
return f"β Retraining failed: {str(e)}"
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
EvoTransformer is a lightweight, evolving neural network with ~28M parameters.
|
181 |
-
It learns from feedback, adapts over time, and reasons using both web and context data.
|
182 |
-
|
183 |
-
**Why Evo?**
|
184 |
-
β
Evolves from human input
|
185 |
-
β
Architecturally updatable
|
186 |
-
β
Transparent and fine-tunable
|
187 |
-
β
Efficient on modest hardware
|
188 |
-
|
189 |
-
**Hardware:** Trained on Google Colab CPU/GPU
|
190 |
-
**Token limit:** 128
|
191 |
-
**Benchmark:** PIQA, HellaSwag, ARC
|
192 |
-
**Version:** Evo v2.2 (Memory + Web Retrieval + Feedback Learning)
|
193 |
-
**π Last Evolution:** {get_last_update()}
|
194 |
-
""")
|
195 |
-
|
196 |
-
gr.Markdown(f"""
|
197 |
-
## π§ EvoTransformer Architecture Summary
|
198 |
-
{get_model_summary()}
|
199 |
-
""")
|
200 |
-
|
201 |
-
with gr.Row():
|
202 |
-
question = gr.Textbox(label="Ask anything", placeholder="e.g. Whatβs the best way to boil water?")
|
203 |
-
|
204 |
-
with gr.Row():
|
205 |
-
option1 = gr.Textbox(label="Option A")
|
206 |
-
option2 = gr.Textbox(label="Option B")
|
207 |
-
|
208 |
-
context = gr.Textbox(label="π Optional Context", lines=2, placeholder="Paste any extra background info here")
|
209 |
-
|
210 |
-
run_btn = gr.Button("π Run Comparison")
|
211 |
-
|
212 |
-
with gr.Row():
|
213 |
-
evo_out = gr.Textbox(label="π§ EvoRAG's Reasoned Answer")
|
214 |
-
gpt_out = gr.Textbox(label="π€ GPT-3.5's Suggestion")
|
215 |
-
|
216 |
-
with gr.Row():
|
217 |
-
feedback_dropdown = gr.Dropdown([
|
218 |
-
"π Evo was correct. Retrain from this.",
|
219 |
-
"π Evo was wrong. Don't retrain."
|
220 |
-
], label="Was Evoβs answer useful?")
|
221 |
-
submit_btn = gr.Button("π¬ Submit Feedback")
|
222 |
-
|
223 |
-
feedback_status = gr.Textbox(label="Feedback Status")
|
224 |
|
225 |
with gr.Row():
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
""")
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
retrain_btn.click(fn=manual_retrain, outputs=retrain_status)
|
239 |
|
240 |
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from inference import evo_chat_predict
|
|
|
|
|
|
|
3 |
import subprocess
|
4 |
|
5 |
+
# Global chat history buffer
|
6 |
+
chat_history = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# π§ Main chat handler
|
9 |
+
def chat_fn(user_input, option1, option2):
|
10 |
+
global chat_history
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Validate input
|
13 |
+
if not user_input or not option1 or not option2:
|
14 |
+
return "Please enter a message and both options.", chat_history
|
15 |
|
16 |
+
options = [option1.strip(), option2.strip()]
|
17 |
+
result = evo_chat_predict(chat_history, user_input, options)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Format Evo reply
|
20 |
+
evo_response = f"**Answer:** {result['answer']} \n**Reasoning:** {result['reasoning']}"
|
21 |
+
chat_history.append(f"User: {user_input}")
|
22 |
+
chat_history.append(f"Evo: {evo_response}")
|
|
|
|
|
23 |
|
24 |
+
return evo_response, chat_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# π Reset chat history
|
27 |
+
def clear_fn():
|
28 |
+
global chat_history
|
29 |
+
chat_history = []
|
30 |
+
return "", "", "", []
|
|
|
|
|
|
|
31 |
|
32 |
+
# π Trigger Evo retraining
|
33 |
+
def retrain_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
try:
|
35 |
+
subprocess.run(["python", "retrain_from_feedback.py"], check=True)
|
36 |
+
return "β
Evo retrained successfully."
|
|
|
|
|
|
|
|
|
37 |
except Exception as e:
|
38 |
return f"β Retraining failed: {str(e)}"
|
39 |
|
40 |
+
# π§ Gradio UI layout
|
41 |
+
with gr.Blocks(title="EvoRAG β Real-Time Adaptive Reasoning AI") as demo:
|
42 |
+
gr.Markdown("## 𧬠EvoRAG β The Evolving Reasoning AI")
|
43 |
+
gr.Markdown("Ask a question, give two options, and Evo will decide with confidence. Then, retrain it live.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
with gr.Row():
|
46 |
+
with gr.Column(scale=4):
|
47 |
+
user_input = gr.Textbox(label="Your Question", lines=2)
|
48 |
+
option1 = gr.Textbox(label="Option 1")
|
49 |
+
option2 = gr.Textbox(label="Option 2")
|
50 |
+
submit = gr.Button("π§ Ask Evo")
|
51 |
+
clear = gr.Button("π Clear")
|
52 |
+
retrain = gr.Button("π Retrain Evo from Feedback")
|
53 |
|
54 |
+
with gr.Column(scale=6):
|
55 |
+
evo_reply = gr.Markdown()
|
56 |
+
chat_display = gr.HighlightedText(label="Conversation History")
|
|
|
57 |
|
58 |
+
submit.click(fn=chat_fn, inputs=[user_input, option1, option2],
|
59 |
+
outputs=[evo_reply, chat_display])
|
60 |
+
clear.click(fn=clear_fn, inputs=[], outputs=[user_input, option1, option2, chat_display])
|
61 |
+
retrain.click(fn=retrain_model, inputs=[], outputs=evo_reply)
|
|
|
62 |
|
63 |
demo.launch()
|